leecode更新

This commit is contained in:
markilue 2022-10-20 14:43:18 +08:00
parent b03cc42571
commit 1b92547add
21 changed files with 9093 additions and 8 deletions

View File

@ -0,0 +1,120 @@
package com.markilue.leecode.backtrace;
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
/**
* @BelongsProject: Leecode
* @BelongsPackage: com.markilue.leecode.backtrace
* @Author: markilue
* @CreateTime: 2022-10-20 09:46
* @Description: TODO 力扣47题 全排列II
* 给定一个可包含重复数字的序列 nums 按任意顺序 返回所有不重复的全排列
* @Version: 1.0
*/
public class PermuteUnique {
@Test
public void test() {
int[] nums = {1, 1, 2};
System.out.println(permuteUnique(nums));
}
@Test
public void test1() {
int[] nums = {1, 2, 3};
System.out.println(permuteUnique(nums));
}
List<List<Integer>> result = new ArrayList<>();
List<Integer> cur = new ArrayList<>();
int[] index = new int[10];
/**
* 思路要求不重复且不要求顺序则还是两种方式
* 1第一种即排序之后使用used数组记录是否用过同一树层不能使用相同的数据不同树层可以使用相同的数;
* 2)使用map记录数字次数
* 这里尝试使用1但使用set了
* 速度击败44.42%内存击败39.13%
*
* @param nums
* @return
*/
public List<List<Integer>> permuteUnique(int[] nums) {
boolean[] used = new boolean[nums.length];
Arrays.sort(nums);
backtracking(nums, used);
// backtracking(nums);
return result;
}
public void backtracking(int[] nums) {
// if(start>nums.length){
// return;
// }
if (cur.size() == nums.length) {
result.add(new ArrayList<>(cur));
return;
}
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i < nums.length; i++) {
if (set.contains(nums[i]) || index[i] == 1) {
continue;
}
index[i] = 1;
set.add(nums[i]);
cur.add(nums[i]);
backtracking(nums);
cur.remove(cur.size() - 1);
index[i] = 0;
}
}
/**
* 速度击败99.85%内存击败89.51%
* @param nums
* @param used
*/
public void backtracking(int[] nums, boolean[] used) {
if (cur.size() == nums.length) {
result.add(new ArrayList<>(cur));
return;
}
for (int i = 0; i < nums.length; i++) {
if ((i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false)) {
continue;
}
if (used[i] == false) {
// index[i] = 1;
used[i] = true;
cur.add(nums[i]);
backtracking(nums,used);
cur.remove(cur.size() - 1);
// index[i] = 0;
used[i] = false;
}
}
}
}

View File

@ -0,0 +1,237 @@
package com.markilue.leecode.backtrace;
import com.sun.crypto.provider.PBEWithMD5AndDESCipher;
import org.junit.Test;
import java.util.*;
/**
* @BelongsProject: Leecode
* @BelongsPackage: com.markilue.leecode.backtrace
* @Author: markilue
* @CreateTime: 2022-10-20 11:14
* @Description: TODO 力扣51题 N皇后
* 按照国际象棋的规则皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子
* n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上并且使皇后彼此之间不能相互攻击
* 给你一个整数 n 返回所有不同的 n 皇后问题 的解决方案
* 每一种解法包含一个不同的 n 皇后问题 的棋子放置方案该方案中 'Q' '.' 分别代表了皇后和空位
* @Version: 1.0
*/
public class SolveNQueens {
@Test
public void test() {
// StringBuilder builder=new StringBuilder("1");
// System.out.println(builder.delete(0, builder.length()-1));
System.out.println(solveNQueens(5));
}
@Test
public void test1() {
// StringBuilder builder=new StringBuilder("1");
// System.out.println(builder.delete(0, builder.length()-1));
System.out.println(solveNQueens(8).size());
}
/**
* 主要是注意条件同行同列斜线都不行
* 速度击败39.74%内存击败92.94%
* @param n
* @return
*/
public List<List<String>> solveNQueens(int n) {
int[] used = new int[n];
// for (int i = 0; i < n; i++) {
// used[i]=Integer.MIN_VALUE;
// }
backtracking1(n, used, 0);
return result;
}
List<List<String>> result = new ArrayList<>();
List<String> cur = new ArrayList<>();
/**
* used数组记录位置使用情况used[i]=k表示第i行第k列被占用
* value表示当前是在放置第多少列了
* 效率低下原因for循环需要检查前面所有的列效率太低下了是否可以拿一个set记录一下不能放的位置
* @param n
* @param used
*/
public void backtracking(int n, int[] used, int value) {
if (cur.size() == n) {
result.add(new ArrayList<>(cur));
return;
}
StringBuilder stringBuilder = new StringBuilder();
//横向行走
for (int i = 0; i < n; i++) {
boolean flag = true;
//不合规则
for (int j = 0; j < value; j++) {
if(!check(j,used[j],value,i)){
flag=false;
break;
}
}
if (!flag) {
continue;
}
used[value] = i;
for (int j = 0; j < i; j++) {
stringBuilder.append(".");
}
stringBuilder.append("Q");
for (int j = i + 1; j < n; j++) {
stringBuilder.append(".");
}
cur.add(stringBuilder.toString());
//纵向行走
backtracking(n, used, value + 1);
cur.remove(cur.size() - 1);
stringBuilder.delete(0, stringBuilder.length());
}
}
/**
* used数组记录位置使用情况used[i]=k表示第i行第k列被占用
* value表示当前是在放置第多少列了
* 优化stringbuilder,使用replace方法
* 好像效率反而降低了
* @param n
* @param used
*/
public void backtracking1(int n, int[] used, int value) {
if (cur.size() == n) {
result.add(new ArrayList<>(cur));
return;
}
StringBuilder build=new StringBuilder();
for (int i = 0; i < n; i++) {
build.append(".");
}
StringBuilder stringBuilder = new StringBuilder(build);
//横向行走
for (int i = 0; i < n; i++) {
boolean flag = true;
//不合规则
for (int j = 0; j < value; j++) {
if(!check(j,used[j],value,i)){
flag=false;
break;
}
}
if (!flag) {
continue;
}
used[value] = i;
stringBuilder.replace(i,i+1,"Q");
cur.add(stringBuilder.toString());
//纵向行走
backtracking(n, used, value + 1);
cur.remove(cur.size() - 1);
stringBuilder.replace(i,i+1,".");
// stringBuilder.delete(i, stringBuilder.length());
}
}
public boolean check(int i,int value1,int j,int value2){
//同列
if(value1==value2){
return false;
}
//斜线
if(Math.abs(i-j)== Math.abs(value1-value2)){
return false;
}
return true;
}
/**
* 官方代码利用set记录不能使用的行列
* 效率好像也不高击败39.74%
* @param n
* @return
*/
public List<List<String>> solveNQueens1(int n) {
List<List<String>> solutions = new ArrayList<List<String>>();
int[] queens = new int[n];
Arrays.fill(queens, -1);
Set<Integer> columns = new HashSet<Integer>();
Set<Integer> diagonals1 = new HashSet<Integer>();
Set<Integer> diagonals2 = new HashSet<Integer>();
backtrack(solutions, queens, n, 0, columns, diagonals1, diagonals2);
return solutions;
}
public void backtrack(List<List<String>> solutions, int[] queens, int n, int row, Set<Integer> columns, Set<Integer> diagonals1, Set<Integer> diagonals2) {
if (row == n) {
List<String> board = generateBoard(queens, n);
solutions.add(board);
} else {
for (int i = 0; i < n; i++) {
//竖着的
if (columns.contains(i)) {
continue;
}
//斜线
int diagonal1 = row - i;
if (diagonals1.contains(diagonal1)) {
continue;
}
int diagonal2 = row + i;
if (diagonals2.contains(diagonal2)) {
continue;
}
queens[row] = i;
columns.add(i);
diagonals1.add(diagonal1);
diagonals2.add(diagonal2);
backtrack(solutions, queens, n, row + 1, columns, diagonals1, diagonals2);
queens[row] = -1;
columns.remove(i);
diagonals1.remove(diagonal1);
diagonals2.remove(diagonal2);
}
}
}
public List<String> generateBoard(int[] queens, int n) {
List<String> board = new ArrayList<String>();
for (int i = 0; i < n; i++) {
char[] row = new char[n];
Arrays.fill(row, '.');
row[queens[i]] = 'Q';
board.add(new String(row));
}
return board;
}
}

View File

@ -0,0 +1,711 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:55
@Usage :
@Desc : RNet直接进行分类
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_3 import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -0,0 +1,714 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:55
@Usage :
@Desc : RNet直接进行分类
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_34 import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -0,0 +1,714 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:55
@Usage :
@Desc : RNet直接进行分类
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_35 import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -0,0 +1,714 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:55
@Usage :
@Desc : RNet直接进行分类
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_4 import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -0,0 +1,714 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:55
@Usage :
@Desc : RNet直接进行分类
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_45 import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -0,0 +1,714 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:55
@Usage :
@Desc : RNet直接进行分类
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_5 import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -675,11 +675,11 @@ if __name__ == '__main__':
### unhealthy_data.shape: (16594,10)
# healthy_size, _, _ = train_data_healthy.shape
# unhealthy_size, _, _ = train_data_unhealthy.shape
# train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
# healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
# healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
# unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))

View File

@ -0,0 +1,687 @@
# -*- coding: utf-8 -*-
# coding: utf-8
'''
@Author : dingjiawen
@Date : 2022/10/11 18:53
@Usage :
@Desc : Rnet-SE模型对比
'''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_S import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_S"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
# save_name = "E:\self_example\TensorFlow_eaxmple\Model_train_test\condition_monitoring\hard_model\weight\joint_timestamp120_feature10_weight_epoch11_0.0077/weight"
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "../hard_model/two_weight/{0}_timestamp{1}_feature{2}_weight_epoch14/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_S/{0}_timestamp{1}_feature{2}_mse.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_S/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
# save_name = "../model/joint/{0}_timestamp{1}_feature{2}.h5".format(model_name,
# time_stamp,
# feature_num,
# batch_size,
# EPOCH)
# save_step_two_name = "../model/joint_two/{0}_timestamp{1}_feature{2}.h5".format(model_name,
# time_stamp,
# feature_num,
# batch_size,
# EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False, pred_3=output1, pred_4=output2,
pred_5=output3)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
if isPlot:
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
# plt.text(35000, 0.9, "Truth Fault", fontsize=10, color='black', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xlabel("time")
plt.ylabel("confience")
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10})
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10})
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
step_one_model = Joint_Monitoring()
step_one_model.load_weights(save_name)
#
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
getResult(step_one_model, healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
unhealthy_data=train_data_unhealthy, unhealthy_label=train_label1_unhealthy,isSave=True)
###TODO 展示全部的结果
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
# showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -0,0 +1,310 @@
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix
import seaborn as sns
from sklearn.model_selection import train_test_split
from condition_monitoring.data_deal import loadData
from keras.callbacks import EarlyStopping
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "ResNet"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model//{0}.h5".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
# train_data = np.load("../../../data/train_data.npy")
# train_label = np.load("../../../data/train_label.npy")
# test_data = np.load("../../../data/test_data.npy")
# test_label = np.load("../../../data/test_label.npy")
# CIFAR_100_data = tf.keras.datasets.cifar100
# (train_data, train_label), (test_data, test_label) = CIFAR_100_data.load_data()
# train_data=np.array(train_data)
# train_label=np.array(train_label)
# print(train_data.shape)
# print(train_label.shape)
# print(train_data)
# print(test_data)
#
#
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
def identity_block(input_tensor, out_dim):
con1 = tf.keras.layers.Conv1D(filters=out_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
input_tensor)
bhn1 = tf.keras.layers.BatchNormalization()(con1)
# con2 = tf.keras.layers.Conv1D(filters=out_dim // 4, kernel_size=3, padding='SAME', activation=tf.nn.relu)(bhn1)
# bhn2 = tf.keras.layers.BatchNormalization()(con2)
con3 = tf.keras.layers.Conv1D(filters=out_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(bhn1)
out = tf.keras.layers.Add()([input_tensor, con3])
out = tf.nn.relu(out)
return out
def resnet_Model():
inputs = tf.keras.Input(shape=[120, 10])
conv1 = tf.keras.layers.Conv1D(filters=20, kernel_size=3, padding='SAME', activation=tf.nn.relu)(inputs)
'''第一层'''
output_dim = 10
identity_1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
conv1)
identity_1 = tf.keras.layers.BatchNormalization()(identity_1)
for _ in range(2):
identity_1 = identity_block(identity_1, output_dim)
'''第二层'''
output_dim = 20
identity_2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
identity_1)
identity_2 = tf.keras.layers.BatchNormalization()(identity_2)
for _ in range(2):
identity_2 = identity_block(identity_2, output_dim)
'''第三层'''
output_dim = 20
identity_3 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
identity_2)
identity_3 = tf.keras.layers.BatchNormalization()(identity_3)
for _ in range(2):
identity_3 = identity_block(identity_3, output_dim)
'''第四层'''
output_dim = 40
identity_4 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
identity_3)
identity_4 = tf.keras.layers.BatchNormalization()(identity_4)
for _ in range(2):
identity_4 = identity_block(identity_4, output_dim)
flatten = tf.keras.layers.GlobalAvgPool1D()(identity_4)
dropout = tf.keras.layers.Dropout(0.217)(flatten)
dense = tf.keras.layers.Dense(128, activation=tf.nn.relu)(dropout)
dense = tf.keras.layers.BatchNormalization(name="bn_last")(dense)
dense = tf.keras.layers.Dense(2, activation=tf.nn.sigmoid)(dense)
model = tf.keras.Model(inputs=inputs, outputs=dense)
return model
if __name__ == '__main__':
# # 数据读入
#
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
train_label = train_label2
test_label = test_label2
model = resnet_Model()
model.compile(optimizer=tf.optimizers.Adam(), loss=tf.losses.binary_crossentropy,
metrics=['acc'])
model.summary()
early_stop = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=5, mode='min', verbose=1)
checkpoint = tf.keras.callbacks.ModelCheckpoint(
filepath=save_name,
monitor='val_loss',
verbose=1,
save_best_only=True,
mode='min',
period=1)
history = model.fit(train_data, train_label, epochs=20, batch_size=32, validation_data=(test_data, test_label),
callbacks=[checkpoint, early_stop])
model.save("./model/ResNet.h5")
model = tf.keras.models.load_model("../model/ResNet_model.h5")
# 结果展示
trained_data = tf.keras.models.Model(inputs=model.input, outputs=model.get_layer('bn_last').output).predict(
train_data)
predict_label = model.predict(test_data)
predict_label_max = np.argmax(predict_label, axis=1)
predict_label = np.expand_dims(predict_label_max, axis=1)
confusion_matrix = confusion_matrix(test_label, predict_label)
tsne = TSNE(n_components=3, verbose=2, perplexity=30, n_iter=5000).fit_transform(trained_data)
print("tsne[:,0]", tsne[:, 0])
print("tsne[:,1]", tsne[:, 1])
print("tsne[:,2]", tsne[:, 2])
x, y, z = tsne[:, 0], tsne[:, 1], tsne[:, 2]
x = (x - np.min(x)) / (np.max(x) - np.min(x))
y = (y - np.min(y)) / (np.max(y) - np.min(y))
z = (z - np.min(z)) / (np.max(z) - np.min(z))
fig1 = plt.figure()
ax1 = fig1.add_subplot(projection='3d')
ax1.scatter3D(x, y, z, c=train_label, cmap=plt.cm.get_cmap("jet", 10))
fig2 = plt.figure()
ax2 = fig2.add_subplot()
sns.heatmap(confusion_matrix, annot=True, fmt="d", cmap='Blues')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
# fig3 = plt.figure()
# ax3 = fig3.add_subplot()
# plt.plot(history.epoch, history.history.get('acc'), label='acc')
# plt.plot(history.epoch, history.history.get('val_acc'), label='val_acc')
#
# fig4 = plt.figure()
# ax4 = fig3.add_subplot()
# plt.plot(history.epoch, history.history.get('loss'), label='loss')
# plt.plot(history.epoch, history.history.get('val_loss'), label='val_loss')
plt.legend()
plt.show()
score = model.evaluate(test_data, test_label)
print('score:', score)

View File

@ -4,7 +4,12 @@
'''
@Author : dingjiawen
@Date : 2022/10/11 18:53
@Date : 2022/10/19 14:34
@Usage :
@Desc :
'''
@Desc : SVM
'''
import sklearn.svm as svm

View File

@ -0,0 +1,129 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/12 17:48
@Usage : 经典SE通道注意力
@Desc :
'''
import tensorflow as tf
import tensorflow.keras
from tensorflow.keras import *
import tensorflow.keras.layers as layers
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
import keras.backend as K
class Between_0_1(tf.keras.constraints.Constraint):
def __call__(self, w):
# 调用父类__init__()方法
super(Between_0_1, self).__init__()
return K.clip(w, 0, 1)
class SEChannelAttention(layers.Layer):
def __init__(self):
# 调用父类__init__()方法
super(SEChannelAttention, self).__init__()
self.DWC = DepthwiseConv1D(kernel_size=1, padding='SAME')
# self.DWC = DepthwiseConv1D(kernel_size=1, padding='causal',dilation_rate=4,data_format='channels_last')
def build(self, input_shape):
if len(input_shape) != 3:
raise ValueError('Inputs to `DynamicChannelAttention` should have rank 3. '
'Received input shape:', str(input_shape))
print(input_shape)
# GAP
self.GAP = tf.keras.layers.GlobalAvgPool1D()
self.c1 = tf.keras.layers.Conv1D(filters=input_shape[2], kernel_size=1, padding='SAME')
# s1 = tf.nn.sigmoid(c1)
# GMP
self.GMP = tf.keras.layers.GlobalMaxPool1D()
self.c2 = tf.keras.layers.Conv1D(filters=input_shape[2], kernel_size=1, padding='SAME')
# s2 = tf.nn.sigmoid(c2)
# weight
self.weight_kernel = self.add_weight(
shape=(1, input_shape[2]),
initializer='glorot_uniform',
name='weight_kernel')
def call(self, inputs, **kwargs):
batch_size, length, channel = inputs.shape
DWC1 = self.DWC(inputs)
# GAP
GAP = self.GAP(DWC1)
GAP = tf.expand_dims(GAP, axis=1)
c1 = self.c1(GAP)
# c1 = tf.keras.layers.BatchNormalization()(c1)
# s1 = tf.nn.sigmoid(c1)
# # GMP
# GMP = self.GMP(DWC1)
# GMP = tf.expand_dims(GMP, axis=1)
# c2 = self.c2(GMP)
# c2 = tf.keras.layers.BatchNormalization()(c2)
# s2 = tf.nn.sigmoid(c2)
# print(self.weight_kernel)
weight_kernel = tf.broadcast_to(self.weight_kernel, shape=[length, channel])
weight_kernel = tf.broadcast_to(weight_kernel, shape=[batch_size, length, channel])
s1 = tf.broadcast_to(c1, shape=[batch_size, length, channel])
# s2 = tf.broadcast_to(s2, shape=[batch_size, length, channel])
output = weight_kernel * s1 * inputs
return output
class DynamicPooling(layers.Layer):
def __init__(self, pool_size=2):
# 调用父类__init__()方法
super(DynamicPooling, self).__init__()
self.pool_size = pool_size
pass
def build(self, input_shape):
if len(input_shape) != 3:
raise ValueError('Inputs to `DynamicChannelAttention` should have rank 3. '
'Received input shape:', str(input_shape))
# GAP
self.AP = tf.keras.layers.AveragePooling1D(pool_size=self.pool_size)
# GMP
self.MP = tf.keras.layers.MaxPool1D(pool_size=self.pool_size)
# weight
self.weight_kernel = self.add_weight(
shape=(int(input_shape[1] / self.pool_size), input_shape[2]),
initializer='glorot_uniform',
name='weight_kernel',
constraint=Between_0_1())
def call(self, inputs, **kwargs):
batch_size, length, channel = inputs.shape
# GAP
GAP = self.AP(inputs)
# GMP
GMP = self.MP(inputs)
weight_kernel = tf.broadcast_to(self.weight_kernel, shape=GMP.shape)
output = tf.add(weight_kernel * GAP, (tf.ones_like(weight_kernel) - weight_kernel) * GMP)
return output

View File

@ -0,0 +1,457 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
# concat3 = tf.concat([output1, output2, output3], axis=1)
concat3=output1
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
# concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
concat3 = output1
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,455 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,455 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,457 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
# concat3 = tf.concat([output1, output2, output3], axis=1)
concat3 = output2
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
# concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
concat3 = output2
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,455 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,457 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
# concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
concat3 = output3
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
# concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
concat3 = output3
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,447 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:LCAU
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.SE_channelAttention import SEChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = SEChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = SEChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = SEChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss.numpy())
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = MSE_loss + Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -0,0 +1,133 @@
import tensorflow as tf
import numpy as np
from matplotlib import pyplot as plt
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix
import seaborn as sns
# 数据读入
train_data = np.load("../../../data/train_data.npy")
train_label = np.load("../../../data/train_label.npy")
test_data = np.load("../../../data/test_data.npy")
test_label = np.load("../../../data/test_label.npy")
# CIFAR_100_data = tf.keras.datasets.cifar100
# (train_data, train_label), (test_data, test_label) = CIFAR_100_data.load_data()
# train_data=np.array(train_data)
# train_label=np.array(train_label)
# print(train_data.shape)
# print(train_label.shape)
# print(train_data)
# print(test_data)
#
#
def identity_block(input_tensor, out_dim):
con1 = tf.keras.layers.Conv2D(filters=out_dim // 4, kernel_size=1, padding='SAME', activation=tf.nn.relu)(
input_tensor)
bhn1 = tf.keras.layers.BatchNormalization()(con1)
con2 = tf.keras.layers.Conv2D(filters=out_dim // 4, kernel_size=3, padding='SAME', activation=tf.nn.relu)(bhn1)
bhn2 = tf.keras.layers.BatchNormalization()(con2)
con3 = tf.keras.layers.Conv2D(filters=out_dim, kernel_size=1, padding='SAME', activation=tf.nn.relu)(bhn2)
out = tf.keras.layers.Add()([input_tensor, con3])
out = tf.nn.relu(out)
return out
def resnet_Model():
inputs = tf.keras.Input(shape=[80, 80, 9])
conv1 = tf.keras.layers.Conv2D(filters=64, kernel_size=3, padding='SAME', activation=tf.nn.relu)(inputs)
'''第一层'''
output_dim = 64
identity_1 = tf.keras.layers.Conv2D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
conv1)
identity_1 = tf.keras.layers.BatchNormalization()(identity_1)
for _ in range(3):
identity_1 = identity_block(identity_1, output_dim)
'''第二层'''
output_dim = 128
identity_2 = tf.keras.layers.Conv2D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
identity_1)
identity_2 = tf.keras.layers.BatchNormalization()(identity_2)
for _ in range(2):
identity_2 = identity_block(identity_2, output_dim)
'''第三层'''
output_dim = 256
identity_3 = tf.keras.layers.Conv2D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
identity_2)
identity_3 = tf.keras.layers.BatchNormalization()(identity_3)
for _ in range(3):
identity_3 = identity_block(identity_3, output_dim)
'''第四层'''
output_dim = 512
identity_4 = tf.keras.layers.Conv2D(filters=output_dim, kernel_size=3, padding='SAME', activation=tf.nn.relu)(
identity_3)
identity_4 = tf.keras.layers.BatchNormalization()(identity_4)
for _ in range(3):
identity_4 = identity_block(identity_4, output_dim)
flatten = tf.keras.layers.Flatten()(identity_4)
dropout = tf.keras.layers.Dropout(0.217)(flatten)
dense = tf.keras.layers.Dense(128, activation=tf.nn.relu,)(dropout)
dense = tf.keras.layers.BatchNormalization(name="bn_last")(dense)
dense = tf.keras.layers.Dense(9, activation=tf.nn.softmax)(dense)
model = tf.keras.Model(inputs=inputs, outputs=dense)
return model
if __name__ == '__main__':
model = resnet_Model()
model.compile(optimizer=tf.optimizers.SGD(1e-3,momentum=0.02), loss=tf.losses.sparse_categorical_crossentropy,
metrics=['acc'])
model.summary()
history = model.fit(train_data, train_label, epochs=10, batch_size=10,validation_data=(test_data, test_label))
model.save("ResNet_model.h5")
# model=tf.keras.models.load_model("../model/ResNet_model.h5")
#
# trained_data = tf.keras.models.Model(inputs=model.input, outputs=model.get_layer('bn_last').output).predict(
# train_data)
# predict_label = model.predict(test_data)
# predict_label_max = np.argmax(predict_label, axis=1)
# predict_label = np.expand_dims(predict_label_max, axis=1)
#
# confusion_matrix = confusion_matrix(test_label, predict_label)
tsne = TSNE(n_components=3, verbose=2, perplexity=30,n_iter=5000).fit_transform(trained_data)
print("tsne[:,0]", tsne[:, 0])
print("tsne[:,1]", tsne[:, 1])
print("tsne[:,2]", tsne[:, 2])
x, y, z = tsne[:, 0], tsne[:, 1], tsne[:, 2]
x = (x - np.min(x)) / (np.max(x) - np.min(x))
y = (y - np.min(y)) / (np.max(y) - np.min(y))
z = (z - np.min(z)) / (np.max(z) - np.min(z))
fig1 = plt.figure()
ax1 = fig1.add_subplot(projection='3d')
ax1.scatter3D(x, y, z, c=train_label, cmap=plt.cm.get_cmap("jet", 10))
fig2 = plt.figure()
ax2 = fig2.add_subplot()
sns.heatmap(confusion_matrix, annot=True, fmt="d", cmap='Blues')
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
# fig3 = plt.figure()
# ax3 = fig3.add_subplot()
# plt.plot(history.epoch, history.history.get('acc'), label='acc')
# plt.plot(history.epoch, history.history.get('val_acc'), label='val_acc')
#
# fig4 = plt.figure()
# ax4 = fig3.add_subplot()
# plt.plot(history.epoch, history.history.get('loss'), label='loss')
# plt.plot(history.epoch, history.history.get('val_loss'), label='val_loss')
plt.legend()
plt.show()
score = model.evaluate(test_data, test_label)
print('score:', score)