leecode更新
This commit is contained in:
parent
4b279d5f1d
commit
3a2eadc687
|
|
@ -0,0 +1,125 @@
|
||||||
|
package com.markilue.leecode.greedy;
|
||||||
|
|
||||||
|
import org.junit.Test;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.HashSet;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @BelongsProject: Leecode
|
||||||
|
* @BelongsPackage: com.markilue.leecode.greedy
|
||||||
|
* @Author: markilue
|
||||||
|
* @CreateTime: 2022-10-28 10:15
|
||||||
|
* @Description: TODO 力扣45题 跳跃游戏II:
|
||||||
|
* 给你一个非负整数数组nums ,你最初位于数组的第一个位置。
|
||||||
|
* 数组中的每个元素代表你在该位置可以跳跃的最大长度。
|
||||||
|
* 你的目标是使用最少的跳跃次数到达数组的最后一个位置。
|
||||||
|
* @Version: 1.0
|
||||||
|
*/
|
||||||
|
public class Jump {
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void test() {
|
||||||
|
int[] nums = {2, 2, 2, 1, 4};
|
||||||
|
System.out.println(jump(nums));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void test1() {
|
||||||
|
int[] nums = {2, 3, 1, 1, 4};
|
||||||
|
System.out.println(jump(nums));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void test2() {
|
||||||
|
int[] nums = {1, 1, 1, 1, 1};
|
||||||
|
System.out.println(jump(nums));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void test3() {
|
||||||
|
int[] nums = {1, 1};
|
||||||
|
System.out.println(jump(nums));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void test4() {
|
||||||
|
int[] nums = {3, 2, 1};
|
||||||
|
System.out.println(jump(nums));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
public void test5() {
|
||||||
|
int[] nums = {5, 4, 0, 1, 3, 6, 8, 0, 9, 4, 9, 1, 8, 7, 4, 8};
|
||||||
|
System.out.println(jump1(nums));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 要求使用最少跳跃次数达到数组的最后一个位置:即最早能覆盖cover到最后
|
||||||
|
* 速度击败99.04%,内存击败62.81%
|
||||||
|
*
|
||||||
|
* @param nums
|
||||||
|
* @return
|
||||||
|
*/
|
||||||
|
public int jump(int[] nums) {
|
||||||
|
if (nums.length == 1) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
int curDistance = 0; //当前覆盖的最远距离的下标
|
||||||
|
int step = 0; //记录要走的步数
|
||||||
|
int nextDistance = 0; //下一步覆盖的最远距离的下标
|
||||||
|
|
||||||
|
for (int i = 0; i < nums.length; i++) {
|
||||||
|
|
||||||
|
//更新下一步覆盖的最远距离的下标
|
||||||
|
nextDistance = Math.max(nums[i] + i, nextDistance);
|
||||||
|
//遇到当前覆盖的最远距离的下标
|
||||||
|
if (i == curDistance) {
|
||||||
|
|
||||||
|
if (curDistance != nums.length - 1) {
|
||||||
|
step++;//需要走一步
|
||||||
|
curDistance = nextDistance;//更新当前覆盖的最远距离的下标
|
||||||
|
//下一步的覆盖范围已经包含终点,结束循环
|
||||||
|
if (nextDistance >= nums.length - 1) break;
|
||||||
|
} else break;//当前覆盖的最远距离的下标是集合终点,不需要再走了
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return step;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* 贪心算法II:即移动下标只要遇到当前覆盖的最远距离的下标,则步数加一,不考虑是不是终点的情况
|
||||||
|
* 速度击败99.04%,内存击败62.81%
|
||||||
|
*
|
||||||
|
* @param nums
|
||||||
|
* @return
|
||||||
|
*/
|
||||||
|
public int jump1(int[] nums) {
|
||||||
|
|
||||||
|
int curDistance = 0; //当前覆盖的最远距离的下标
|
||||||
|
int step = 0; //记录要走的步数
|
||||||
|
int nextDistance = 0; //下一步覆盖的最远距离的下标
|
||||||
|
//注意这里是小于nums.size()-1,这里是关键
|
||||||
|
for (int i = 0; i < nums.length - 1; i++) {
|
||||||
|
|
||||||
|
//更新下一步覆盖的最远距离的下标
|
||||||
|
nextDistance = Math.max(nums[i] + i, nextDistance);
|
||||||
|
//遇到当前覆盖的最远距离的下标
|
||||||
|
if (i == curDistance) {
|
||||||
|
curDistance = nextDistance;
|
||||||
|
step++;//需要走一步
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return step;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
}
|
||||||
|
|
@ -8,6 +8,13 @@ import random
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
from condition_monitoring.data_deal.loadData import read_data
|
from condition_monitoring.data_deal.loadData import read_data
|
||||||
|
from model.Joint_Monitoring.Joint_Monitoring_banda import Joint_Monitoring
|
||||||
|
from model.Joint_Monitoring.compare.RNet_L import Joint_Monitoring as Joint_Monitoring_L
|
||||||
|
from model.Joint_Monitoring.compare.RNet_S import Joint_Monitoring as Joint_Monitoring_SE
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow.keras
|
||||||
|
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
|
||||||
|
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
|
||||||
|
|
||||||
'''
|
'''
|
||||||
@Author : dingjiawen
|
@Author : dingjiawen
|
||||||
|
|
@ -24,7 +31,12 @@ max_file_name = "E:\self_example\TensorFlow_eaxmple\Model_train_test\condition_m
|
||||||
|
|
||||||
source_path = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
source_path = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
||||||
|
|
||||||
list = [64.16, 65.26, 65.11, 66.6, 67.16, 66.28, 73.86, 75.24, 73.98, 76.7, 98.86, 99.45, 99.97]
|
model_name = "../hard_model/two_weight/banda_joint_epoch0_8887_9454/weight"
|
||||||
|
model_name1 = "../hard_model/two_weight/banda_joint_epoch14_9872_9863/weight"
|
||||||
|
|
||||||
|
file_name = "E:\跑模型\论文写作/DCAU.txt"
|
||||||
|
|
||||||
|
# list = [64.16, 65.26, 65.11, 66.6, 67.16, 66.28, 73.86, 75.24, 73.98, 76.7, 98.86, 99.45, 99.97]
|
||||||
|
|
||||||
|
|
||||||
def plot_result(result_data):
|
def plot_result(result_data):
|
||||||
|
|
@ -39,10 +51,10 @@ def plot_result(result_data):
|
||||||
'legend.fontsize': 5,
|
'legend.fontsize': 5,
|
||||||
}
|
}
|
||||||
plt.rcParams.update(parameters)
|
plt.rcParams.update(parameters)
|
||||||
plt.figure()
|
fig,ax=plt.subplots(1, 1)
|
||||||
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
plt.rc('font', family='Times New Roman') # 全局字体样式
|
||||||
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 5} # 设置坐标标签的字体大小,字体
|
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 5} # 设置坐标标签的字体大小,字体
|
||||||
plt.scatter(list(range(result_data.shape[0])), result_data, c='black', s=0.5, label="predict")
|
plt.scatter(list(range(result_data.shape[0])), result_data, c='black', s=0.01, label="predict")
|
||||||
# 画出 y=1 这条水平线
|
# 画出 y=1 这条水平线
|
||||||
plt.axhline(0.5, c='red', label='Failure threshold', lw=1)
|
plt.axhline(0.5, c='red', label='Failure threshold', lw=1)
|
||||||
# 箭头指向上面的水平线
|
# 箭头指向上面的水平线
|
||||||
|
|
@ -79,9 +91,49 @@ def plot_result(result_data):
|
||||||
plt.ylabel('Confidence', fontsize=5)
|
plt.ylabel('Confidence', fontsize=5)
|
||||||
plt.xlabel('Time', fontsize=5)
|
plt.xlabel('Time', fontsize=5)
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
# plt.legend(loc='best',edgecolor='black',fontsize=3)
|
# plt.legend(loc='best', edgecolor='black', fontsize=4)
|
||||||
plt.legend(loc='best', frameon=False, fontsize=3)
|
plt.legend(loc='best', frameon=False, fontsize=4)
|
||||||
# plt.grid()
|
# plt.grid()
|
||||||
|
|
||||||
|
|
||||||
|
#局部方法图
|
||||||
|
axins = inset_axes(ax, width="40%", height="30%", loc='lower left',
|
||||||
|
bbox_to_anchor=(0.1, 0.1, 1, 1),
|
||||||
|
bbox_transform=ax.transAxes)
|
||||||
|
axins.scatter(list(range(result_data.shape[0])), result_data, c='black', s=0.001, label="predict")
|
||||||
|
axins.axvline(result_data.shape[0] * 2 / 3, c='blue', ls='-.', lw=0.5, label='real fault')
|
||||||
|
plt.axhline(0.5, c='red', label='Failure threshold', lw=0.5)
|
||||||
|
#设置放大区间
|
||||||
|
# 设置放大区间
|
||||||
|
zone_left = int(result_data.shape[0]*2/3-100)
|
||||||
|
zone_right = int(result_data.shape[0]*2/3)+100
|
||||||
|
x=list(range(result_data.shape[0]))
|
||||||
|
|
||||||
|
# 坐标轴的扩展比例(根据实际数据调整)
|
||||||
|
x_ratio = 0.5 # x轴显示范围的扩展比例
|
||||||
|
y_ratio = 0.5 # y轴显示范围的扩展比例
|
||||||
|
|
||||||
|
mark_inset(ax, axins, loc1=4, loc2=2, fc="none", ec='k', lw=0.5)
|
||||||
|
|
||||||
|
# X轴的显示范围
|
||||||
|
xlim0 = x[zone_left] - (x[zone_right] - x[zone_left]) * x_ratio
|
||||||
|
xlim1 = x[zone_right] + (x[zone_right] - x[zone_left]) * x_ratio
|
||||||
|
# axins.tick_params(bottom=False)
|
||||||
|
axins.xaxis.set_visible(False)
|
||||||
|
|
||||||
|
# Y轴的显示范围
|
||||||
|
# y = np.hstack((y_1[zone_left:zone_right], y_2[zone_left:zone_right], y_3[zone_left:zone_right]))
|
||||||
|
# ylim0 = np.min(y) - (np.max(y) - np.min(y)) * y_ratio
|
||||||
|
# ylim1 = np.max(y) + (np.max(y) - np.min(y)) * y_ratio
|
||||||
|
|
||||||
|
# 调整子坐标系的显示范围
|
||||||
|
axins.set_xlim(xlim0, xlim1)
|
||||||
|
# axins.set_ylim(ylim0, ylim1)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
@ -133,31 +185,31 @@ def plot_MSE(total_MSE, total_max):
|
||||||
def plot_Corr(data, size: int = 1):
|
def plot_Corr(data, size: int = 1):
|
||||||
parameters = {
|
parameters = {
|
||||||
'figure.dpi': 600,
|
'figure.dpi': 600,
|
||||||
'figure.figsize': (2.8 * size, 2 * size),
|
'figure.figsize': (9, 7),
|
||||||
'savefig.dpi': 600,
|
'savefig.dpi': 600,
|
||||||
'xtick.direction': 'inout',
|
'xtick.direction': 'inout',
|
||||||
'ytick.direction': 'inout',
|
'ytick.direction': 'inout',
|
||||||
'xtick.labelsize': 3 * size,
|
'xtick.labelsize': 14,
|
||||||
'ytick.labelsize': 3 * size,
|
'ytick.labelsize': 14,
|
||||||
'legend.fontsize': 5 * size,
|
'legend.fontsize': 12,
|
||||||
}
|
}
|
||||||
plt.rcParams.update(parameters)
|
plt.rcParams.update(parameters)
|
||||||
plt.figure()
|
plt.figure()
|
||||||
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
||||||
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 4 * size} # 设置坐标标签的字体大小,字体
|
# font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 4 * size} # 设置坐标标签的字体大小,字体
|
||||||
|
|
||||||
print("计算皮尔逊相关系数")
|
print("计算皮尔逊相关系数")
|
||||||
pd_data = pd.DataFrame(data)
|
pd_data = pd.DataFrame(data)
|
||||||
person = pd_data.corr()
|
person = pd_data.corr()
|
||||||
print(person)
|
print(person)
|
||||||
# 画热点图heatmap
|
# 画热点图heatmap
|
||||||
cmap = sns.heatmap(person, annot=True, annot_kws={
|
cmap = sns.heatmap(person, annot=True, cmap='Blues',annot_kws={
|
||||||
'fontsize': 2.6 * size
|
'fontsize': 11
|
||||||
})
|
})
|
||||||
classes = ['Gs', 'Gio', 'Gip', 'Gp', 'Gwt', 'En', 'Gft', 'Grt', 'Gwt', 'Et', 'Rs', 'Ap', 'Ws', 'Dw', 'Ges', 'Gt',
|
classes = ['Gs', 'Gio', 'Gip', 'Gp', 'Gwt', 'En', 'Gft', 'Grt', 'Gwt', 'Et', 'Rs', 'Ap', 'Ws', 'Dw', 'Ges', 'Gt',
|
||||||
'Vx', 'Vy']
|
'Vx', 'Vy']
|
||||||
indices = range(len(person))
|
indices = range(len(person))
|
||||||
plt.title("Heatmap of correlation coefficient matrix", size=6 * size, fontdict=font1)
|
plt.title("Heatmap of correlation coefficient matrix", size=18)
|
||||||
# pad调整label与坐标轴之间的距离
|
# pad调整label与坐标轴之间的距离
|
||||||
plt.tick_params(bottom=False, top=False, left=False, right=False, direction='inout', length=2, width=0.5, pad=1)
|
plt.tick_params(bottom=False, top=False, left=False, right=False, direction='inout', length=2, width=0.5, pad=1)
|
||||||
plt.xticks([index + 0.5 for index in indices], classes, rotation=0) # 设置横坐标方向,rotation=45为45度倾斜
|
plt.xticks([index + 0.5 for index in indices], classes, rotation=0) # 设置横坐标方向,rotation=45为45度倾斜
|
||||||
|
|
@ -165,11 +217,11 @@ def plot_Corr(data, size: int = 1):
|
||||||
|
|
||||||
# 调整色带的标签:
|
# 调整色带的标签:
|
||||||
cbar = cmap.collections[0].colorbar
|
cbar = cmap.collections[0].colorbar
|
||||||
cbar.ax.tick_params(labelsize=4 * size, labelcolor="black", length=2, width=0.5, pad=1)
|
cbar.ax.tick_params(labelsize=10, labelcolor="black", length=2, width=0.5, pad=1)
|
||||||
cbar.ax.set_ylabel(ylabel="color scale", color="black", loc="center", fontdict=font1)
|
# cbar.ax.set_ylabel(ylabel="color scale", color="black", loc="center", size=12)
|
||||||
# plt.axis('off') # 去坐标轴
|
# plt.axis('off') # 去坐标轴
|
||||||
|
|
||||||
plt.savefig('./corr.png')
|
# plt.savefig('./corr.png')
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
pass
|
pass
|
||||||
|
|
@ -191,27 +243,27 @@ def plot_bar(y_data):
|
||||||
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
||||||
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 5} # 设置坐标标签的字体大小,字体
|
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 5} # 设置坐标标签的字体大小,字体
|
||||||
|
|
||||||
x_width = [ i for i in range(0, len(y_data))]
|
x_width = [i for i in range(0, len(y_data))]
|
||||||
# x2_width = [i + 0.3 for i in x_width]
|
# x2_width = [i + 0.3 for i in x_width]
|
||||||
|
|
||||||
plt.bar(x_width[0], y_data[0], lw=1, color=['#FAF4E1'], width=0.5, label="CNN", edgecolor='black')
|
plt.bar(x_width[0], y_data[0], lw=1, color=['#FAF4E1'], width=0.5, label="CNN", edgecolor='black')
|
||||||
|
|
||||||
plt.bar(x_width[1] , y_data[1], lw=1, color=['#F5E3C4'], width=0.5, label="GRU", edgecolor='black')
|
plt.bar(x_width[1], y_data[1], lw=1, color=['#F5E3C4'], width=0.5, label="GRU", edgecolor='black')
|
||||||
plt.bar(x_width[2] , y_data[2], lw=1, color=['#EBC99D'], width=0.5, label="CNN-GRU", edgecolor='black')
|
plt.bar(x_width[2], y_data[2], lw=1, color=['#EBC99D'], width=0.5, label="CNN-GRU", edgecolor='black')
|
||||||
plt.bar(x_width[3] , y_data[3], lw=1, color=['#FFC79C'], width=0.5, label="DCConv", edgecolor='black')
|
plt.bar(x_width[3], y_data[3], lw=1, color=['#FFC79C'], width=0.5, label="DCConv", edgecolor='black')
|
||||||
plt.bar(x_width[4] , y_data[4], lw=1, color=['#BEE9C7'], width=0.5, label="RepDCConv", edgecolor='black')
|
plt.bar(x_width[4], y_data[4], lw=1, color=['#BEE9C7'], width=0.5, label="RepDCConv", edgecolor='black')
|
||||||
plt.bar(x_width[5] , y_data[5], lw=1, color=['#B8E9D0'], width=0.5,label="RNet-MSE", edgecolor='black')
|
plt.bar(x_width[5], y_data[5], lw=1, color=['#B8E9D0'], width=0.5, label="RNet-MSE", edgecolor='black')
|
||||||
plt.bar(x_width[6] , y_data[6], lw=1, color=['#B9E9E2'], width=0.5, label="RNet", edgecolor='black')
|
plt.bar(x_width[6], y_data[6], lw=1, color=['#B9E9E2'], width=0.5, label="RNet", edgecolor='black')
|
||||||
plt.bar(x_width[7] , y_data[7], lw=1, color=['#D6E6F2'], width=0.5, label="RNet-SE", edgecolor='black')
|
plt.bar(x_width[7], y_data[7], lw=1, color=['#D6E6F2'], width=0.5, label="RNet-SE", edgecolor='black')
|
||||||
plt.bar(x_width[8] , y_data[8], lw=1, color=['#B4D1E9'], width=0.5, label="RNet-L", edgecolor='black')
|
plt.bar(x_width[8], y_data[8], lw=1, color=['#B4D1E9'], width=0.5, label="RNet-L", edgecolor='black')
|
||||||
plt.bar(x_width[9] , y_data[9], lw=1, color=['#AEB5EE'], width=0.5, label="RNet-D", edgecolor='black')
|
plt.bar(x_width[9], y_data[9], lw=1, color=['#AEB5EE'], width=0.5, label="RNet-D", edgecolor='black')
|
||||||
plt.bar(x_width[10] , y_data[10], lw=1, color=['#D2D3FC'], width=0.5, label="ResNet-18", edgecolor='black')
|
plt.bar(x_width[10], y_data[10], lw=1, color=['#D2D3FC'], width=0.5, label="ResNet-18", edgecolor='black')
|
||||||
plt.bar(x_width[11] , y_data[11], lw=1, color=['#D5A9FF'], width=0.5, label="ResNet-C", edgecolor='black')
|
plt.bar(x_width[11], y_data[11], lw=1, color=['#D5A9FF'], width=0.5, label="ResNet-C", edgecolor='black')
|
||||||
plt.bar(x_width[12] , y_data[12], lw=1, color=['#E000F5'], width=0.5, label="JMNet", edgecolor='black')
|
plt.bar(x_width[12], y_data[12], lw=1, color=['#E000F5'], width=0.5, label="JMNet", edgecolor='black')
|
||||||
|
|
||||||
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
||||||
plt.xticks([])
|
plt.xticks([])
|
||||||
plt.ylabel('False Positive Rate(%)',fontsize=18)
|
plt.ylabel('False Positive Rate(%)', fontsize=18)
|
||||||
# plt.xlabel('Time', fontsize=5)
|
# plt.xlabel('Time', fontsize=5)
|
||||||
# plt.tight_layout()
|
# plt.tight_layout()
|
||||||
|
|
||||||
|
|
@ -220,6 +272,7 @@ def plot_bar(y_data):
|
||||||
plt.ylim([-0.01, 5])
|
plt.ylim([-0.01, 5])
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def acc(y_data=list):
|
def acc(y_data=list):
|
||||||
parameters = {
|
parameters = {
|
||||||
'figure.dpi': 600,
|
'figure.dpi': 600,
|
||||||
|
|
@ -227,43 +280,44 @@ def acc(y_data=list):
|
||||||
'savefig.dpi': 600,
|
'savefig.dpi': 600,
|
||||||
'xtick.direction': 'in',
|
'xtick.direction': 'in',
|
||||||
'ytick.direction': 'in',
|
'ytick.direction': 'in',
|
||||||
'xtick.labelsize': 15,
|
'xtick.labelsize': 18,
|
||||||
'ytick.labelsize': 15,
|
'ytick.labelsize': 20,
|
||||||
'legend.fontsize': 12,
|
'legend.fontsize': 14,
|
||||||
}
|
}
|
||||||
plt.rcParams.update(parameters)
|
plt.rcParams.update(parameters)
|
||||||
plt.figure()
|
plt.figure()
|
||||||
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
||||||
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 5} # 设置坐标标签的字体大小,字体
|
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 5} # 设置坐标标签的字体大小,字体
|
||||||
|
|
||||||
x_width = [ i/2 for i in range(0, len(y_data))]
|
x_width = [i / 2 for i in range(0, len(y_data))]
|
||||||
# x2_width = [i + 0.3 for i in x_width]
|
# x2_width = [i + 0.3 for i in x_width]
|
||||||
|
|
||||||
plt.bar(x_width[0] , y_data[0], lw=1, color=['#FAF4E1'], width=0.25, label="CNN", edgecolor='black')
|
plt.bar(x_width[0], y_data[0], lw=1, color=['#FAF4E1'], width=0.25, label="CNN", edgecolor='black')
|
||||||
plt.bar(x_width[1] , y_data[1], lw=1, color=['#F5E3C4'], width=0.25, label="GRU", edgecolor='black')
|
plt.bar(x_width[1], y_data[1], lw=1, color=['#F5E3C4'], width=0.25, label="GRU", edgecolor='black')
|
||||||
plt.bar(x_width[2] , y_data[2], lw=1, color=['#EBC99D'], width=0.25, label="CNN-GRU", edgecolor='black')
|
plt.bar(x_width[2], y_data[2], lw=1, color=['#EBC99D'], width=0.25, label="CNN-GRU", edgecolor='black')
|
||||||
plt.bar(x_width[3] , y_data[3], lw=1, color=['#FFC79C'], width=0.25, label="DCConv", edgecolor='black')
|
plt.bar(x_width[3], y_data[3], lw=1, color=['#FFC79C'], width=0.25, label="DCConv", edgecolor='black')
|
||||||
plt.bar(x_width[4] , y_data[4], lw=1, color=['#BEE9C7'], width=0.25, label="RepDCConv", edgecolor='black')
|
plt.bar(x_width[4], y_data[4], lw=1, color=['#BEE9C7'], width=0.25, label="RepDCConv", edgecolor='black')
|
||||||
plt.bar(x_width[5] , y_data[5], lw=1, color=['#B8E9D0'], width=0.25,label="RNet-MSE", edgecolor='black')
|
plt.bar(x_width[5], y_data[5], lw=1, color=['#B8E9D0'], width=0.25, label="RNet-MSE", edgecolor='black')
|
||||||
plt.bar(x_width[6] , y_data[6], lw=1, color=['#B9E9E2'], width=0.25, label="RNet", edgecolor='black')
|
plt.bar(x_width[6], y_data[6], lw=1, color=['#B9E9E2'], width=0.25, label="RNet", edgecolor='black')
|
||||||
plt.bar(x_width[7] , y_data[7], lw=1, color=['#D6E6F2'], width=0.25, label="RNet-SE", edgecolor='black')
|
plt.bar(x_width[7], y_data[7], lw=1, color=['#D6E6F2'], width=0.25, label="RNet-SE", edgecolor='black')
|
||||||
plt.bar(x_width[8] , y_data[8], lw=1, color=['#B4D1E9'], width=0.25, label="RNet-L", edgecolor='black')
|
plt.bar(x_width[8], y_data[8], lw=1, color=['#B4D1E9'], width=0.25, label="RNet-L", edgecolor='black')
|
||||||
plt.bar(x_width[9] , y_data[9], lw=1, color=['#AEB5EE'], width=0.25, label="RNet-D", edgecolor='black')
|
plt.bar(x_width[9], y_data[9], lw=1, color=['#AEB5EE'], width=0.25, label="RNet-D", edgecolor='black')
|
||||||
plt.bar(x_width[10] , y_data[10], lw=1, color=['#D2D3FC'], width=0.25, label="ResNet-18", edgecolor='black')
|
plt.bar(x_width[10], y_data[10], lw=1, color=['#D2D3FC'], width=0.25, label="ResNet-18", edgecolor='black')
|
||||||
plt.bar(x_width[11] , y_data[11], lw=1, color=['#D5A9FF'], width=0.25, label="ResNet-C", edgecolor='black')
|
plt.bar(x_width[11], y_data[11], lw=1, color=['#D5A9FF'], width=0.25, label="ResNet-C", edgecolor='black')
|
||||||
plt.bar(x_width[12] , y_data[12], lw=1, color=['#E000F5'], width=0.25, label="JMNet", edgecolor='black')
|
plt.bar(x_width[12], y_data[12], lw=1, color=['#E000F5'], width=0.25, label="JMNet", edgecolor='black')
|
||||||
|
|
||||||
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
||||||
plt.xticks([])
|
plt.xticks([])
|
||||||
plt.ylabel('Accuracy(%)',fontsize=18)
|
plt.ylabel('Accuracy(%)', fontsize=20)
|
||||||
# plt.xlabel('Time', fontsize=5)
|
plt.xlabel('Methods', fontsize=20)
|
||||||
# plt.tight_layout()
|
# plt.tight_layout()
|
||||||
|
|
||||||
num1, num2, num3, num4 = 0.08, 1, 3, 0
|
num1, num2, num3, num4 = 0, 1, 3, 0
|
||||||
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4, ncol=5, frameon=False, markerscale=0.5)
|
plt.legend(bbox_to_anchor=(num1, num2), loc=num3, borderaxespad=num4, ncol=5, frameon=False, markerscale=0.5)
|
||||||
plt.ylim([60, 105])
|
plt.ylim([60, 105])
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def plot_FNR1(y_data):
|
def plot_FNR1(y_data):
|
||||||
parameters = {
|
parameters = {
|
||||||
'figure.dpi': 600,
|
'figure.dpi': 600,
|
||||||
|
|
@ -283,20 +337,20 @@ def plot_FNR1(y_data):
|
||||||
x_width = range(0, len(y_data))
|
x_width = range(0, len(y_data))
|
||||||
# x2_width = [i + 0.3 for i in x_width]
|
# x2_width = [i + 0.3 for i in x_width]
|
||||||
|
|
||||||
plt.bar(x_width[0], y_data[0], lw=1, color=['#FAF4E1'], width=0.5*5/6, label="CNN", edgecolor='black')
|
plt.bar(x_width[0], y_data[0], lw=1, color=['#FAF4E1'], width=0.5 * 5 / 6, label="CNN", edgecolor='black')
|
||||||
plt.bar(x_width[1] , y_data[1], lw=1, color=['#F5E3C4'], width=0.5*5/6, label="GRU", edgecolor='black')
|
plt.bar(x_width[1], y_data[1], lw=1, color=['#F5E3C4'], width=0.5 * 5 / 6, label="GRU", edgecolor='black')
|
||||||
plt.bar(x_width[2] , y_data[2], lw=1, color=['#EBC99D'], width=0.5*5/6, label="CNN-GRU", edgecolor='black')
|
plt.bar(x_width[2], y_data[2], lw=1, color=['#EBC99D'], width=0.5 * 5 / 6, label="CNN-GRU", edgecolor='black')
|
||||||
plt.bar(x_width[3] , y_data[3], lw=1, color=['#FFC79C'], width=0.5*5/6, label="DCConv", edgecolor='black')
|
plt.bar(x_width[3], y_data[3], lw=1, color=['#FFC79C'], width=0.5 * 5 / 6, label="DCConv", edgecolor='black')
|
||||||
plt.bar(x_width[4] , y_data[4], lw=1, color=['#BEE9C7'], width=0.5*5/6, label="RepDCConv", edgecolor='black')
|
plt.bar(x_width[4], y_data[4], lw=1, color=['#BEE9C7'], width=0.5 * 5 / 6, label="RepDCConv", edgecolor='black')
|
||||||
plt.bar(x_width[5] , y_data[5], lw=1, color=['#B8E9D0'], width=0.5*5/6,label="RNet-MSE", edgecolor='black')
|
plt.bar(x_width[5], y_data[5], lw=1, color=['#B8E9D0'], width=0.5 * 5 / 6, label="RNet-MSE", edgecolor='black')
|
||||||
plt.bar(x_width[6] , y_data[6], lw=1, color=['#B9E9E2'], width=0.5*5/6, label="RNet", edgecolor='black')
|
plt.bar(x_width[6], y_data[6], lw=1, color=['#B9E9E2'], width=0.5 * 5 / 6, label="RNet", edgecolor='black')
|
||||||
plt.bar(x_width[7] , y_data[7], lw=1, color=['#D6E6F2'], width=0.5*5/6, label="RNet-SE", edgecolor='black')
|
plt.bar(x_width[7], y_data[7], lw=1, color=['#D6E6F2'], width=0.5 * 5 / 6, label="RNet-SE", edgecolor='black')
|
||||||
plt.bar(x_width[8] , y_data[8], lw=1, color=['#B4D1E9'], width=0.5*5/6, label="RNet-L", edgecolor='black')
|
plt.bar(x_width[8], y_data[8], lw=1, color=['#B4D1E9'], width=0.5 * 5 / 6, label="RNet-L", edgecolor='black')
|
||||||
plt.bar(x_width[9] , y_data[9], lw=1, color=['#AEB5EE'], width=0.5*5/6, label="RNet-D", edgecolor='black')
|
plt.bar(x_width[9], y_data[9], lw=1, color=['#AEB5EE'], width=0.5 * 5 / 6, label="RNet-D", edgecolor='black')
|
||||||
|
|
||||||
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
||||||
plt.xticks([])
|
plt.xticks([])
|
||||||
plt.ylabel('False Negative Rate(%)',fontsize=18)
|
plt.ylabel('False Negative Rate(%)', fontsize=18)
|
||||||
# plt.xlabel('Time', fontsize=5)
|
# plt.xlabel('Time', fontsize=5)
|
||||||
# plt.tight_layout()
|
# plt.tight_layout()
|
||||||
|
|
||||||
|
|
@ -325,20 +379,20 @@ def plot_FNR2(y_data):
|
||||||
x_width = range(0, len(y_data))
|
x_width = range(0, len(y_data))
|
||||||
# x2_width = [i + 0.3 for i in x_width]
|
# x2_width = [i + 0.3 for i in x_width]
|
||||||
|
|
||||||
plt.bar(x_width[0] , y_data[0], lw=1, color=['#FAF4E1'], width=0.5*2/3, label="ResNet-18", edgecolor='black')
|
plt.bar(x_width[0], y_data[0], lw=1, color=['#FAF4E1'], width=0.5 * 2 / 3, label="ResNet-18", edgecolor='black')
|
||||||
plt.bar(x_width[1] , y_data[1], lw=1, color=['#F5E3C4'], width=0.5*2/3, label="RNet-3", edgecolor='black')
|
plt.bar(x_width[1], y_data[1], lw=1, color=['#F5E3C4'], width=0.5 * 2 / 3, label="RNet-3", edgecolor='black')
|
||||||
plt.bar(x_width[2] , y_data[2], lw=1, color=['#EBC99D'], width=0.5*2/3, label="RNet-4", edgecolor='black')
|
plt.bar(x_width[2], y_data[2], lw=1, color=['#EBC99D'], width=0.5 * 2 / 3, label="RNet-4", edgecolor='black')
|
||||||
plt.bar(x_width[3] , y_data[3], lw=1, color=['#FFC79C'], width=0.5*2/3, label="RNet-5", edgecolor='black')
|
plt.bar(x_width[3], y_data[3], lw=1, color=['#FFC79C'], width=0.5 * 2 / 3, label="RNet-5", edgecolor='black')
|
||||||
plt.bar(x_width[4] , y_data[4], lw=1, color=['#D6E6F2'], width=0.5*2/3, label="RNet-34", edgecolor='black')
|
plt.bar(x_width[4], y_data[4], lw=1, color=['#D6E6F2'], width=0.5 * 2 / 3, label="RNet-34", edgecolor='black')
|
||||||
plt.bar(x_width[5] , y_data[5], lw=1, color=['#B4D1E9'], width=0.5*2/3, label="RNet-35", edgecolor='black')
|
plt.bar(x_width[5], y_data[5], lw=1, color=['#B4D1E9'], width=0.5 * 2 / 3, label="RNet-35", edgecolor='black')
|
||||||
plt.bar(x_width[6] , y_data[6], lw=1, color=['#AEB5EE'], width=0.5*2/3, label="RNet-45", edgecolor='black')
|
plt.bar(x_width[6], y_data[6], lw=1, color=['#AEB5EE'], width=0.5 * 2 / 3, label="RNet-45", edgecolor='black')
|
||||||
# plt.bar(x_width[7] + 2.0, y_data[10], lw=0.5, color=['#8085e9'], width=1, label="ResNet-18", edgecolor='black')
|
# plt.bar(x_width[7] + 2.0, y_data[10], lw=0.5, color=['#8085e9'], width=1, label="ResNet-18", edgecolor='black')
|
||||||
plt.bar(x_width[7] , y_data[7], lw=1, color=['#D5A9FF'], width=0.5*2/3, label="ResNet-C", edgecolor='black')
|
plt.bar(x_width[7], y_data[7], lw=1, color=['#D5A9FF'], width=0.5 * 2 / 3, label="ResNet-C", edgecolor='black')
|
||||||
plt.bar(x_width[8] , y_data[8], lw=1, color=['#E000F5'], width=0.5*2/3, label="JMNet", edgecolor='black')
|
plt.bar(x_width[8], y_data[8], lw=1, color=['#E000F5'], width=0.5 * 2 / 3, label="JMNet", edgecolor='black')
|
||||||
|
|
||||||
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
# plt.tick_params(bottom=False, top=False, left=True, right=False, direction='in', pad=1)
|
||||||
plt.xticks([])
|
plt.xticks([])
|
||||||
plt.ylabel('False Negative Rate(%)',fontsize=18)
|
plt.ylabel('False Negative Rate(%)', fontsize=18)
|
||||||
# plt.xlabel('Time', fontsize=5)
|
# plt.xlabel('Time', fontsize=5)
|
||||||
# plt.tight_layout()
|
# plt.tight_layout()
|
||||||
|
|
||||||
|
|
@ -348,6 +402,84 @@ def plot_FNR2(y_data):
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_hot(data):
|
||||||
|
# 画热点图heatmap
|
||||||
|
plt.figure(1, figsize=(9, 12))
|
||||||
|
|
||||||
|
for i in range(8):
|
||||||
|
plt.subplot(8, 1, i + 1)
|
||||||
|
# cbar_kws设置色带,fraction设置大小,pad设置填充
|
||||||
|
cmap = sns.heatmap(np.expand_dims(data[i, :], axis=0), annot=False, cmap='Blues', linecolor='black',
|
||||||
|
linewidths=1,
|
||||||
|
cbar_kws={"orientation": "horizontal",
|
||||||
|
'fraction': 0.6,
|
||||||
|
'pad': 0.00
|
||||||
|
})
|
||||||
|
plt.title("Pred=0,Expc=0", size=18)
|
||||||
|
plt.axis('off') # 去坐标轴
|
||||||
|
# 调整色带的标签:
|
||||||
|
cbar = cmap.collections[0].colorbar
|
||||||
|
cbar.ax.tick_params(labelsize=15, labelcolor="black")
|
||||||
|
# cbar.ax.set_xlabel(xlabel="color scale", color="red", loc="center", fontdict=font2)
|
||||||
|
|
||||||
|
# plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def plot_hot_one(data):
|
||||||
|
# 画热点图heatmap
|
||||||
|
# plt.figure(1, figsize=(9, 12))
|
||||||
|
|
||||||
|
plt.subplots(figsize=(14,2))
|
||||||
|
# cbar_kws设置色带,fraction设置大小,pad设置填充
|
||||||
|
cmap = sns.heatmap(data, annot=False, cmap='Blues', linecolor='black', linewidths=1,
|
||||||
|
cbar_kws={"orientation": "horizontal",
|
||||||
|
'fraction': 0.6,
|
||||||
|
'pad': 0.00
|
||||||
|
})
|
||||||
|
plt.title("Pred=0,Expc=0", size=18)
|
||||||
|
plt.axis('off') # 去坐标轴
|
||||||
|
# 调整色带的标签:
|
||||||
|
cbar = cmap.collections[0].colorbar
|
||||||
|
cbar.ax.tick_params(labelsize=15, labelcolor="black")
|
||||||
|
# cbar.ax.set_xlabel(xlabel="color scale", color="red", loc="center", fontdict=font2)
|
||||||
|
|
||||||
|
# plt.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def plot_mse(file_name="../others_idea/mse"):
|
||||||
|
mse=np.loadtxt(file_name,delimiter=",")
|
||||||
|
mse= mse[2000:2338]
|
||||||
|
|
||||||
|
parameters = {
|
||||||
|
'figure.dpi': 600,
|
||||||
|
'figure.figsize': (7,5),
|
||||||
|
'savefig.dpi': 600,
|
||||||
|
'xtick.direction': 'in',
|
||||||
|
'ytick.direction': 'in',
|
||||||
|
'xtick.labelsize': 15,
|
||||||
|
'ytick.labelsize': 15,
|
||||||
|
'legend.fontsize': 10,
|
||||||
|
}
|
||||||
|
plt.rcParams.update(parameters)
|
||||||
|
plt.figure()
|
||||||
|
plt.rc('font', family='Times New Roman') # 全局字体样式#画混淆矩阵
|
||||||
|
indices = [mse.shape[0] * i / 4 for i in range(5)]
|
||||||
|
classes = ['13/09/17', '14/09/17', '15/09/17', '16/09/17', '17/09/17']
|
||||||
|
|
||||||
|
# plt.xticks([index + 0.5 for index in indices], classes, rotation=25) # 设置横坐标方向,rotation=45为45度倾斜
|
||||||
|
plt.ylabel('MSE', fontsize=15)
|
||||||
|
plt.xlabel('Time', fontsize=15)
|
||||||
|
plt.tight_layout()
|
||||||
|
|
||||||
|
plt.plot(mse)
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def test_result(file_name: str = result_file_name):
|
def test_result(file_name: str = result_file_name):
|
||||||
# result_data = np.recfromcsv(file_name)
|
# result_data = np.recfromcsv(file_name)
|
||||||
result_data = np.loadtxt(file_name, delimiter=",")
|
result_data = np.loadtxt(file_name, delimiter=",")
|
||||||
|
|
@ -365,8 +497,8 @@ def test_result(file_name: str = result_file_name):
|
||||||
print("漏报率", negative_rate)
|
print("漏报率", negative_rate)
|
||||||
|
|
||||||
# 画图
|
# 画图
|
||||||
data = np.zeros([208, ])
|
# data = np.zeros([208, ])
|
||||||
result_data = np.concatenate([result_data, data], axis=0)
|
# result_data = np.concatenate([result_data, data], axis=0)
|
||||||
print(result_data)
|
print(result_data)
|
||||||
print(result_data.shape)
|
print(result_data.shape)
|
||||||
plot_result(result_data)
|
plot_result(result_data)
|
||||||
|
|
@ -382,12 +514,15 @@ def test_mse(mse_file_name: str = mse_file_name, max_file_name: str = max_file_n
|
||||||
plot_MSE(mse_data, max_data)
|
plot_MSE(mse_data, max_data)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def test_corr(file_name=source_path, N=10):
|
def test_corr(file_name=source_path, N=10):
|
||||||
needed_data, label = read_data(file_name=file_name, isNew=False)
|
# needed_data, label = read_data(file_name=file_name, isNew=False)
|
||||||
print(needed_data)
|
# print(needed_data)
|
||||||
print(needed_data.shape)
|
# print(needed_data.shape)
|
||||||
|
# np.save("corr.npy",needed_data)
|
||||||
|
needed_data=np.load("corr.npy")
|
||||||
# plot_original_data(needed_data)
|
# plot_original_data(needed_data)
|
||||||
person = plot_Corr(needed_data, size=3)
|
person = plot_Corr(needed_data)
|
||||||
person = np.array(person)
|
person = np.array(person)
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
@ -396,6 +531,66 @@ def test_bar(y_data=list):
|
||||||
plot_bar(y_data)
|
plot_bar(y_data)
|
||||||
|
|
||||||
|
|
||||||
|
def test_model_weight(model_name=model_name):
|
||||||
|
print("===============第一次===================")
|
||||||
|
model = Joint_Monitoring()
|
||||||
|
model.load_weights(model_name)
|
||||||
|
# model.build(input_shape=(32, 120, 10))
|
||||||
|
DCAU = model.get_layer('dynamic_channel_attention')
|
||||||
|
DCAU.build(input_shape=[16, 120, 20])
|
||||||
|
one = tf.ones(shape=[16, 120, 20])
|
||||||
|
weight = DCAU.call(one)[0, 0, :10]
|
||||||
|
print(weight)
|
||||||
|
weight = np.expand_dims(weight, axis=0)
|
||||||
|
plot_hot(weight)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def test_model_weight_l(model_name=model_name):
|
||||||
|
print("===============第一次===================")
|
||||||
|
model = Joint_Monitoring_L()
|
||||||
|
model.load_weights(model_name)
|
||||||
|
# model.build(input_shape=(32, 120, 10))
|
||||||
|
# print(model.summary())
|
||||||
|
DCAU = model.get_layer('light_channel_attention')
|
||||||
|
DCAU.build(input_shape=[16, 120, 20])
|
||||||
|
one = tf.ones(shape=[16, 120, 20])
|
||||||
|
weight = DCAU.call(one)[0, 0, :10]
|
||||||
|
print(weight)
|
||||||
|
weight = np.expand_dims(weight, axis=0)
|
||||||
|
plot_hot_one(weight)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
def test_model_weight_s(model_name=model_name):
|
||||||
|
print("===============第一次===================")
|
||||||
|
model = Joint_Monitoring_SE()
|
||||||
|
model.load_weights(model_name)
|
||||||
|
# model.build(input_shape=(32, 120, 10))
|
||||||
|
# print(model.summary())
|
||||||
|
DCAU = model.get_layer('se_channel_attention')
|
||||||
|
DCAU.build(input_shape=[16, 120, 20])
|
||||||
|
one = tf.ones(shape=[16, 120, 20])
|
||||||
|
weight = DCAU.call(one)[0, 0, :10]
|
||||||
|
print(weight)
|
||||||
|
weight = np.expand_dims(weight, axis=0)
|
||||||
|
plot_hot_one(weight)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def test_model_visualization(model_name=file_name):
|
||||||
|
with open(file_name, 'r', encoding='utf-8') as f:
|
||||||
|
data = np.loadtxt(f, str, delimiter=',')
|
||||||
|
|
||||||
|
needed_data = data[1:, 1:].astype(dtype=np.float)
|
||||||
|
|
||||||
|
print(needed_data.shape)
|
||||||
|
|
||||||
|
plot_hot(needed_data)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# test_mse()
|
# test_mse()
|
||||||
# test_result(file_name='E:\self_example\TensorFlow_eaxmple\Model_train_test\condition_monitoring\self_try\compare\mse\RNet_C\RNet_C_timestamp120_feature10_result2.csv')
|
# test_result(file_name='E:\self_example\TensorFlow_eaxmple\Model_train_test\condition_monitoring\self_try\compare\mse\RNet_C\RNet_C_timestamp120_feature10_result2.csv')
|
||||||
|
|
@ -407,5 +602,15 @@ if __name__ == '__main__':
|
||||||
# list=[99.99,98.95,99.95,96.1,95,99.65,76.25,72.64,75.87,68.74]
|
# list=[99.99,98.95,99.95,96.1,95,99.65,76.25,72.64,75.87,68.74]
|
||||||
# plot_FNR1(list)
|
# plot_FNR1(list)
|
||||||
#
|
#
|
||||||
list=[3.43,1.99,1.92,2.17,1.63,1.81,1.78,1.8,0.6]
|
# list=[3.43,1.99,1.92,2.17,1.63,1.81,1.78,1.8,0.6]
|
||||||
plot_FNR2(list)
|
# plot_FNR2(list)
|
||||||
|
|
||||||
|
# 查看网络某一层的权重
|
||||||
|
# test_model_visualization()
|
||||||
|
file_name = "../self_try\compare\model\weight\RNet_L_banda_epoch17_0.0086_0.0092/weight"
|
||||||
|
test_model_weight_l(file_name)
|
||||||
|
# file_name = "../self_try\compare\model\weight\RNet_S_epoch3_2.47_1.63/weight"
|
||||||
|
# test_model_weight_l(file_name)
|
||||||
|
|
||||||
|
#单独预测图
|
||||||
|
# plot_mse()
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,579 @@
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
# coding: utf-8
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow.keras
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
||||||
|
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
|
||||||
|
from condition_monitoring.data_deal import loadData_daban as loadData
|
||||||
|
from model.Joint_Monitoring.Joint_Monitoring_banda import Joint_Monitoring
|
||||||
|
|
||||||
|
from model.CommonFunction.CommonFunction import *
|
||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from tensorflow.keras.models import load_model, save_model
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2022/7/8 10:29
|
||||||
|
@Usage : 尝试将预测和分类两种方式相结合,联合监测
|
||||||
|
@Desc :REPVGG+unsampling+GRU进行重构,后面接GDP=全局动态池化+分类器
|
||||||
|
随epoch衰减的MSELoss+随epoch增强的crossEntropy
|
||||||
|
'''
|
||||||
|
|
||||||
|
'''超参数设置'''
|
||||||
|
time_stamp = 120
|
||||||
|
feature_num = 10
|
||||||
|
batch_size = 32
|
||||||
|
learning_rate = 0.001
|
||||||
|
EPOCH = 101
|
||||||
|
model_name = "banda_joint"
|
||||||
|
'''EWMA超参数'''
|
||||||
|
K = 18
|
||||||
|
namuda = 0.01
|
||||||
|
'''保存名称'''
|
||||||
|
|
||||||
|
save_name = "../hard_model/weight/{0}_epoch16_0.0009_0.0014/weight".format(model_name,
|
||||||
|
time_stamp,
|
||||||
|
feature_num,
|
||||||
|
batch_size,
|
||||||
|
EPOCH)
|
||||||
|
save_step_two_name = "../hard_model/two_weight/{0}/weight".format(model_name,
|
||||||
|
time_stamp,
|
||||||
|
feature_num,
|
||||||
|
batch_size,
|
||||||
|
EPOCH)
|
||||||
|
|
||||||
|
# save_name = "../model/joint/{0}_timestamp{1}_feature{2}.h5".format(model_name,
|
||||||
|
# time_stamp,
|
||||||
|
# feature_num,
|
||||||
|
# batch_size,
|
||||||
|
# EPOCH)
|
||||||
|
# save_step_two_name = "../model/joint_two/{0}_timestamp{1}_feature{2}.h5".format(model_name,
|
||||||
|
# time_stamp,
|
||||||
|
# feature_num,
|
||||||
|
# batch_size,
|
||||||
|
# EPOCH)
|
||||||
|
'''文件名'''
|
||||||
|
file_name = "G:\data\SCADA数据\SCADA_已处理_粤水电达坂城2020.1月-5月\风机15.csv"
|
||||||
|
|
||||||
|
'''
|
||||||
|
文件说明:jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
|
||||||
|
文件从0:96748行均是正常值(2019/12.30 00:00:00 - 2020/3/11 05:58:00)
|
||||||
|
从96748:107116行均是异常值(2020/3/11 05:58:01 - 2021/3/18 11:04:00)
|
||||||
|
'''
|
||||||
|
'''文件参数'''
|
||||||
|
# 最后正常的时间点
|
||||||
|
healthy_date = 96748
|
||||||
|
# 最后异常的时间点
|
||||||
|
unhealthy_date = 107116
|
||||||
|
# 异常容忍程度
|
||||||
|
unhealthy_patience = 5
|
||||||
|
|
||||||
|
|
||||||
|
def remove(data, time_stamp=time_stamp):
|
||||||
|
rows, cols = data.shape
|
||||||
|
print("remove_data.shape:", data.shape)
|
||||||
|
num = int(rows / time_stamp)
|
||||||
|
|
||||||
|
return data[:num * time_stamp, :]
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
# 不重叠采样
|
||||||
|
def get_training_data(data, time_stamp: int = time_stamp):
|
||||||
|
removed_data = remove(data=data)
|
||||||
|
rows, cols = removed_data.shape
|
||||||
|
print("removed_data.shape:", data.shape)
|
||||||
|
print("removed_data:", removed_data)
|
||||||
|
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
|
||||||
|
print("train_data:", train_data)
|
||||||
|
batchs, time_stamp, cols = train_data.shape
|
||||||
|
|
||||||
|
for i in range(1, batchs):
|
||||||
|
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
|
||||||
|
if i == 1:
|
||||||
|
train_label = each_label
|
||||||
|
else:
|
||||||
|
train_label = np.concatenate([train_label, each_label], axis=0)
|
||||||
|
|
||||||
|
print("train_data.shape:", train_data.shape)
|
||||||
|
print("train_label.shape", train_label.shape)
|
||||||
|
return train_data[:-1, :], train_label
|
||||||
|
|
||||||
|
|
||||||
|
# 重叠采样
|
||||||
|
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
|
||||||
|
rows, cols = data.shape
|
||||||
|
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
|
||||||
|
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
|
||||||
|
for i in range(rows):
|
||||||
|
if i + time_stamp >= rows:
|
||||||
|
break
|
||||||
|
if i + time_stamp < rows - 1:
|
||||||
|
train_data[i] = data[i:i + time_stamp]
|
||||||
|
train_label[i] = data[i + time_stamp]
|
||||||
|
|
||||||
|
print("重叠采样以后:")
|
||||||
|
print("data:", train_data) # (300334,120,10)
|
||||||
|
print("label:", train_label) # (300334,10)
|
||||||
|
|
||||||
|
if is_Healthy:
|
||||||
|
train_label2 = np.ones(shape=[train_label.shape[0]])
|
||||||
|
else:
|
||||||
|
train_label2 = np.zeros(shape=[train_label.shape[0]])
|
||||||
|
|
||||||
|
print("label2:", train_label2)
|
||||||
|
|
||||||
|
return train_data, train_label, train_label2
|
||||||
|
|
||||||
|
|
||||||
|
# RepConv重参数化卷积
|
||||||
|
def RepConv(input_tensor, k=3):
|
||||||
|
_, _, output_dim = input_tensor.shape
|
||||||
|
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
|
||||||
|
b1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||||
|
|
||||||
|
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
|
||||||
|
b2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||||
|
|
||||||
|
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
|
||||||
|
|
||||||
|
out = tf.keras.layers.Add()([b1, b2, b3])
|
||||||
|
out = tf.nn.relu(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
# RepBlock模块
|
||||||
|
def RepBlock(input_tensor, num: int = 3):
|
||||||
|
for i in range(num):
|
||||||
|
input_tensor = RepConv(input_tensor)
|
||||||
|
return input_tensor
|
||||||
|
|
||||||
|
|
||||||
|
# GAP 全局平均池化
|
||||||
|
def Global_avg_channelAttention(input_tensor):
|
||||||
|
_, length, channel = input_tensor.shape
|
||||||
|
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
|
||||||
|
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
|
||||||
|
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
|
||||||
|
s1 = tf.nn.sigmoid(c1)
|
||||||
|
output = tf.multiply(input_tensor, s1)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
# GDP 全局动态池化
|
||||||
|
def Global_Dynamic_channelAttention(input_tensor):
|
||||||
|
_, length, channel = input_tensor.shape
|
||||||
|
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
|
||||||
|
|
||||||
|
# GAP
|
||||||
|
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
|
||||||
|
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
|
||||||
|
s1 = tf.nn.sigmoid(c1)
|
||||||
|
|
||||||
|
# GMP
|
||||||
|
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
|
||||||
|
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
|
||||||
|
s3 = tf.nn.sigmoid(c2)
|
||||||
|
|
||||||
|
output = tf.multiply(input_tensor, s1)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
# 归一化
|
||||||
|
def normalization(data):
|
||||||
|
rows, cols = data.shape
|
||||||
|
print("归一化之前:", data)
|
||||||
|
print(data.shape)
|
||||||
|
print("======================")
|
||||||
|
|
||||||
|
# 归一化
|
||||||
|
max = np.max(data, axis=0)
|
||||||
|
max = np.broadcast_to(max, [rows, cols])
|
||||||
|
min = np.min(data, axis=0)
|
||||||
|
min = np.broadcast_to(min, [rows, cols])
|
||||||
|
|
||||||
|
data = (data - min) / (max - min)
|
||||||
|
print("归一化之后:", data)
|
||||||
|
print(data.shape)
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
# 正则化
|
||||||
|
def Regularization(data):
|
||||||
|
rows, cols = data.shape
|
||||||
|
print("正则化之前:", data)
|
||||||
|
print(data.shape)
|
||||||
|
print("======================")
|
||||||
|
|
||||||
|
# 正则化
|
||||||
|
mean = np.mean(data, axis=0)
|
||||||
|
mean = np.broadcast_to(mean, shape=[rows, cols])
|
||||||
|
dst = np.sqrt(np.var(data, axis=0))
|
||||||
|
dst = np.broadcast_to(dst, shape=[rows, cols])
|
||||||
|
data = (data - mean) / dst
|
||||||
|
print("正则化之后:", data)
|
||||||
|
print(data.shape)
|
||||||
|
|
||||||
|
return data
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def EWMA(data, K=K, namuda=namuda):
|
||||||
|
# t是啥暂时未知
|
||||||
|
t = 0
|
||||||
|
mid = np.mean(data, axis=0)
|
||||||
|
standard = np.sqrt(np.var(data, axis=0))
|
||||||
|
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
|
||||||
|
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
|
||||||
|
return mid, UCL, LCL
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def get_MSE(data, label, new_model):
|
||||||
|
predicted_data = new_model.predict(data)
|
||||||
|
|
||||||
|
temp = np.abs(predicted_data - label)
|
||||||
|
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predicted_data.shape))
|
||||||
|
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predicted_data.shape)
|
||||||
|
temp3 = temp1 / temp2
|
||||||
|
mse = np.sum((temp1 / temp2) ** 2, axis=1)
|
||||||
|
print("z:", mse)
|
||||||
|
print(mse.shape)
|
||||||
|
|
||||||
|
# mse=np.mean((predicted_data-label)**2,axis=1)
|
||||||
|
print("mse", mse)
|
||||||
|
|
||||||
|
dims, = mse.shape
|
||||||
|
|
||||||
|
mean = np.mean(mse)
|
||||||
|
std = np.sqrt(np.var(mse))
|
||||||
|
max = mean + 3 * std
|
||||||
|
# min = mean-3*std
|
||||||
|
max = np.broadcast_to(max, shape=[dims, ])
|
||||||
|
# min = np.broadcast_to(min,shape=[dims,])
|
||||||
|
mean = np.broadcast_to(mean, shape=[dims, ])
|
||||||
|
|
||||||
|
# plt.plot(max)
|
||||||
|
# plt.plot(mse)
|
||||||
|
# plt.plot(mean)
|
||||||
|
# # plt.plot(min)
|
||||||
|
# plt.show()
|
||||||
|
#
|
||||||
|
#
|
||||||
|
return mse, mean, max
|
||||||
|
# pass
|
||||||
|
|
||||||
|
|
||||||
|
def condition_monitoring_model():
|
||||||
|
input = tf.keras.Input(shape=[time_stamp, feature_num])
|
||||||
|
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
|
||||||
|
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
|
||||||
|
d1 = tf.keras.layers.Dense(300)(GRU1)
|
||||||
|
output = tf.keras.layers.Dense(10)(d1)
|
||||||
|
|
||||||
|
model = tf.keras.Model(inputs=input, outputs=output)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
# trian_data:(300455,120,10)
|
||||||
|
# trian_label1:(300455,10)
|
||||||
|
# trian_label2:(300455,)
|
||||||
|
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
|
||||||
|
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
|
||||||
|
train_label1,
|
||||||
|
train_label2,
|
||||||
|
test_size=split_size,
|
||||||
|
shuffle=True,
|
||||||
|
random_state=100)
|
||||||
|
if is_split:
|
||||||
|
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
|
||||||
|
train_data = np.concatenate([train_data, test_data], axis=0)
|
||||||
|
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
|
||||||
|
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
|
||||||
|
# print(train_data.shape)
|
||||||
|
# print(train_label1.shape)
|
||||||
|
# print(train_label2.shape)
|
||||||
|
# print(train_data.shape)
|
||||||
|
|
||||||
|
return train_data, train_label1, train_label2
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
|
||||||
|
split_size: float = 0.2, shuffle: bool = True):
|
||||||
|
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
|
||||||
|
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
|
||||||
|
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
|
||||||
|
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
|
||||||
|
label1,
|
||||||
|
label2,
|
||||||
|
test_size=split_size,
|
||||||
|
shuffle=shuffle,
|
||||||
|
random_state=100)
|
||||||
|
|
||||||
|
# print(train_data.shape)
|
||||||
|
# print(train_label1.shape)
|
||||||
|
# print(train_label2.shape)
|
||||||
|
# print(train_data.shape)
|
||||||
|
|
||||||
|
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
# trian_data:(300455,120,10)
|
||||||
|
# trian_label1:(300455,10)
|
||||||
|
# trian_label2:(300455,)
|
||||||
|
def train_step_one(train_data, train_label1, train_label2):
|
||||||
|
model = Joint_Monitoring()
|
||||||
|
# # # # TODO 需要运行编译一次,才能打印model.summary()
|
||||||
|
# model.build(input_shape=(batch_size, filter_num, dims))
|
||||||
|
# model.summary()
|
||||||
|
history_loss = []
|
||||||
|
history_val_loss = []
|
||||||
|
learning_rate = 1e-3
|
||||||
|
for epoch in range(EPOCH):
|
||||||
|
|
||||||
|
print()
|
||||||
|
print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||||
|
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
|
||||||
|
if epoch == 0:
|
||||||
|
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
|
||||||
|
train_label2,
|
||||||
|
is_split=True)
|
||||||
|
# print()
|
||||||
|
# print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||||
|
# 用于让train知道,这是这个epoch中的第几次训练
|
||||||
|
z = 0
|
||||||
|
# 用于batch_size次再训练
|
||||||
|
k = 1
|
||||||
|
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
|
||||||
|
size, _, _ = train_data.shape
|
||||||
|
data_1 = tf.expand_dims(data_1, axis=0)
|
||||||
|
label_1 = tf.expand_dims(label_1, axis=0)
|
||||||
|
label_2 = tf.expand_dims(label_2, axis=0)
|
||||||
|
if batch_size != 1:
|
||||||
|
if k % batch_size == 1:
|
||||||
|
data = data_1
|
||||||
|
label1 = label_1
|
||||||
|
label2 = label_2
|
||||||
|
else:
|
||||||
|
data = tf.concat([data, data_1], axis=0)
|
||||||
|
label1 = tf.concat([label1, label_1], axis=0)
|
||||||
|
label2 = tf.concat([label2, label_2], axis=0)
|
||||||
|
else:
|
||||||
|
data = data_1
|
||||||
|
label1 = label_1
|
||||||
|
label2 = label_2
|
||||||
|
|
||||||
|
if k % batch_size == 0:
|
||||||
|
# label = tf.expand_dims(label, axis=-1)
|
||||||
|
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
is_first_time=True)
|
||||||
|
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
|
||||||
|
k = 0
|
||||||
|
z = z + 1
|
||||||
|
k = k + 1
|
||||||
|
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
|
||||||
|
is_first_time=True)
|
||||||
|
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
|
||||||
|
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
|
||||||
|
history_val_loss.append(val_loss)
|
||||||
|
history_loss.append(loss_value.numpy())
|
||||||
|
print('Training loss is :', loss_value.numpy())
|
||||||
|
print('Validating loss is :', val_loss.numpy())
|
||||||
|
if IsStopTraining(history_loss=history_val_loss, patience=7):
|
||||||
|
break
|
||||||
|
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
||||||
|
if learning_rate >= 1e-4:
|
||||||
|
learning_rate = learning_rate * 0.1
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
|
||||||
|
# step_two_model = Joint_Monitoring()
|
||||||
|
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
|
||||||
|
# step_two_model.summary()
|
||||||
|
history_loss = []
|
||||||
|
history_val_loss = []
|
||||||
|
history_accuracy = []
|
||||||
|
learning_rate = 1e-3
|
||||||
|
for epoch in range(EPOCH):
|
||||||
|
print()
|
||||||
|
print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||||
|
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
|
||||||
|
if epoch == 0:
|
||||||
|
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
|
||||||
|
train_label2,
|
||||||
|
is_split=True)
|
||||||
|
# print()
|
||||||
|
# print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||||
|
# 用于让train知道,这是这个epoch中的第几次训练
|
||||||
|
z = 0
|
||||||
|
# 用于batch_size次再训练
|
||||||
|
k = 1
|
||||||
|
|
||||||
|
accuracy_num = 0
|
||||||
|
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
|
||||||
|
size, _, _ = train_data.shape
|
||||||
|
data_1 = tf.expand_dims(data_1, axis=0)
|
||||||
|
label_1 = tf.expand_dims(label_1, axis=0)
|
||||||
|
label_2 = tf.expand_dims(label_2, axis=0)
|
||||||
|
if batch_size != 1:
|
||||||
|
if k % batch_size == 1:
|
||||||
|
data = data_1
|
||||||
|
label1 = label_1
|
||||||
|
label2 = label_2
|
||||||
|
else:
|
||||||
|
data = tf.concat([data, data_1], axis=0)
|
||||||
|
label1 = tf.concat([label1, label_1], axis=0)
|
||||||
|
label2 = tf.concat([label2, label_2], axis=0)
|
||||||
|
else:
|
||||||
|
data = data_1
|
||||||
|
label1 = label_1
|
||||||
|
label2 = label_2
|
||||||
|
|
||||||
|
if k % batch_size == 0:
|
||||||
|
# label = tf.expand_dims(label, axis=-1)
|
||||||
|
output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
|
||||||
|
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
|
||||||
|
learning_rate=learning_rate,
|
||||||
|
is_first_time=False, pred_3=output1, pred_4=output2,
|
||||||
|
pred_5=output3,epoch=epoch)
|
||||||
|
accuracy_num += accuracy_value
|
||||||
|
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
|
||||||
|
accuracy_num / ((z + 1) * batch_size))
|
||||||
|
k = 0
|
||||||
|
z = z + 1
|
||||||
|
k = k + 1
|
||||||
|
|
||||||
|
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
|
||||||
|
val_label2=val_label2,
|
||||||
|
is_first_time=False, step_one_model=step_one_model,epoch=epoch)
|
||||||
|
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
|
||||||
|
accuracy_value=val_accuracy)
|
||||||
|
history_val_loss.append(val_loss)
|
||||||
|
history_loss.append(loss_value.numpy())
|
||||||
|
history_accuracy.append(val_accuracy)
|
||||||
|
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
|
||||||
|
accuracy_num / ((z + 1) * batch_size)))
|
||||||
|
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
|
||||||
|
if IsStopTraining(history_loss=history_val_loss, patience=7):
|
||||||
|
break
|
||||||
|
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
||||||
|
if learning_rate >= 1e-4:
|
||||||
|
learning_rate = learning_rate * 0.1
|
||||||
|
else:
|
||||||
|
print("学习率不再下降")
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
|
||||||
|
history_loss = []
|
||||||
|
history_val_loss = []
|
||||||
|
|
||||||
|
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
|
||||||
|
val_label2=test_label2,
|
||||||
|
is_first_time=False, step_one_model=step_one_model)
|
||||||
|
|
||||||
|
history_val_loss.append(val_loss)
|
||||||
|
print("val_accuracy:", val_accuracy)
|
||||||
|
print("val_loss:", val_loss)
|
||||||
|
|
||||||
|
|
||||||
|
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False):
|
||||||
|
# 获取模型的所有参数的个数
|
||||||
|
# step_two_model.count_params()
|
||||||
|
total_result = []
|
||||||
|
size, length, dims = test_data.shape
|
||||||
|
for epoch in range(0, size - batch_size + 1, batch_size):
|
||||||
|
each_test_data = test_data[epoch:epoch + batch_size, :, :]
|
||||||
|
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
|
||||||
|
total_result.append(output4)
|
||||||
|
total_result = np.reshape(total_result, [total_result.__len__(), -1])
|
||||||
|
total_result = np.reshape(total_result, [-1, ])
|
||||||
|
if isPlot:
|
||||||
|
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
|
||||||
|
# 画出 y=1 这条水平线
|
||||||
|
plt.axhline(0.5, c='red', label='Failure threshold')
|
||||||
|
# 箭头指向上面的水平线
|
||||||
|
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
|
||||||
|
# alpha=0.9, overhang=0.5)
|
||||||
|
# plt.text(35000, 0.9, "Truth Fault", fontsize=10, color='black', verticalalignment='top')
|
||||||
|
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
|
||||||
|
plt.xlabel("time")
|
||||||
|
plt.ylabel("confience")
|
||||||
|
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
|
||||||
|
horizontalalignment='center',
|
||||||
|
bbox={'facecolor': 'grey',
|
||||||
|
'pad': 10})
|
||||||
|
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
|
||||||
|
horizontalalignment='center',
|
||||||
|
bbox={'facecolor': 'grey',
|
||||||
|
'pad': 10})
|
||||||
|
plt.grid()
|
||||||
|
# plt.ylim(0, 1)
|
||||||
|
# plt.xlim(-50, 1300)
|
||||||
|
# plt.legend("", loc='upper left')
|
||||||
|
plt.show()
|
||||||
|
return total_result
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
total_data = loadData.execute(N=feature_num, file_name=file_name)
|
||||||
|
total_data = normalization(data=total_data)
|
||||||
|
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
|
||||||
|
total_data[:healthy_date, :], is_Healthy=True)
|
||||||
|
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
|
||||||
|
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
|
||||||
|
is_Healthy=False)
|
||||||
|
#### TODO 第一步训练
|
||||||
|
# 单次测试
|
||||||
|
# train_step_one(train_data=train_data_healthy[:128, :, :], train_label1=train_label1_healthy[:128, :],train_label2=train_label2_healthy[:128, ])
|
||||||
|
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
|
||||||
|
|
||||||
|
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
|
||||||
|
step_one_model = Joint_Monitoring()
|
||||||
|
step_one_model.load_weights(save_name)
|
||||||
|
|
||||||
|
step_two_model = Joint_Monitoring()
|
||||||
|
step_two_model.load_weights(save_name)
|
||||||
|
|
||||||
|
#### TODO 第二步训练
|
||||||
|
### healthy_data.shape: (300333,120,10)
|
||||||
|
### unhealthy_data.shape: (16594,10)
|
||||||
|
healthy_size, _, _ = train_data_healthy.shape
|
||||||
|
unhealthy_size, _, _ = train_data_unhealthy.shape
|
||||||
|
train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
|
||||||
|
healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
|
||||||
|
healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
|
||||||
|
healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
|
||||||
|
unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
|
||||||
|
train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
|
||||||
|
train_data=train_data,
|
||||||
|
train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
|
||||||
|
|
||||||
|
### TODO 测试测试集
|
||||||
|
step_one_model = Joint_Monitoring()
|
||||||
|
step_one_model.load_weights(save_name)
|
||||||
|
step_two_model = Joint_Monitoring()
|
||||||
|
step_two_model.load_weights(save_step_two_name)
|
||||||
|
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
|
||||||
|
# test_label2=np.expand_dims(test_label2, axis=-1))
|
||||||
|
|
||||||
|
###TODO 展示全部的结果
|
||||||
|
all_data, _, _ = get_training_data_overlapping(
|
||||||
|
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
|
||||||
|
# all_data = np.concatenate([])
|
||||||
|
# 单次测试
|
||||||
|
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
|
||||||
|
showResult(step_two_model, test_data=all_data, isPlot=True)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
@ -17,7 +17,8 @@ import pandas as pd
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
||||||
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
|
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
|
||||||
from condition_monitoring.data_deal import loadData
|
from condition_monitoring.data_deal import loadData_daban as loadData
|
||||||
|
|
||||||
from model.Joint_Monitoring.compare.RNet_L import Joint_Monitoring
|
from model.Joint_Monitoring.compare.RNet_L import Joint_Monitoring
|
||||||
|
|
||||||
from model.CommonFunction.CommonFunction import *
|
from model.CommonFunction.CommonFunction import *
|
||||||
|
|
@ -28,16 +29,16 @@ import random
|
||||||
'''超参数设置'''
|
'''超参数设置'''
|
||||||
time_stamp = 120
|
time_stamp = 120
|
||||||
feature_num = 10
|
feature_num = 10
|
||||||
batch_size = 16
|
batch_size = 32
|
||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
EPOCH = 101
|
EPOCH = 101
|
||||||
model_name = "RNet_L"
|
model_name = "RNet_L_banda"
|
||||||
'''EWMA超参数'''
|
'''EWMA超参数'''
|
||||||
K = 18
|
K = 18
|
||||||
namuda = 0.01
|
namuda = 0.01
|
||||||
'''保存名称'''
|
'''保存名称'''
|
||||||
|
|
||||||
save_name = "./model/weight/{0}_timestamp{1}_feature{2}_weight/weight".format(model_name,
|
save_name = "./model/weight/{0}/weight".format(model_name,
|
||||||
time_stamp,
|
time_stamp,
|
||||||
feature_num,
|
feature_num,
|
||||||
batch_size,
|
batch_size,
|
||||||
|
|
@ -70,7 +71,7 @@ save_max_name = "./mse/{0}/{0}_timestamp{1}_feature{2}_max.csv".format(model_nam
|
||||||
# batch_size,
|
# batch_size,
|
||||||
# EPOCH)
|
# EPOCH)
|
||||||
'''文件名'''
|
'''文件名'''
|
||||||
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
file_name = "G:\data\SCADA数据\SCADA_已处理_粤水电达坂城2020.1月-5月\风机15.csv"
|
||||||
|
|
||||||
'''
|
'''
|
||||||
文件说明:jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
|
文件说明:jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
|
||||||
|
|
@ -79,9 +80,9 @@ file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
||||||
'''
|
'''
|
||||||
'''文件参数'''
|
'''文件参数'''
|
||||||
# 最后正常的时间点
|
# 最后正常的时间点
|
||||||
healthy_date = 415548
|
healthy_date = 96748
|
||||||
# 最后异常的时间点
|
# 最后异常的时间点
|
||||||
unhealthy_date = 432153
|
unhealthy_date = 107116
|
||||||
# 异常容忍程度
|
# 异常容忍程度
|
||||||
unhealthy_patience = 5
|
unhealthy_patience = 5
|
||||||
|
|
||||||
|
|
@ -360,6 +361,8 @@ def train_step_one(train_data, train_label1, train_label2):
|
||||||
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
||||||
if learning_rate >= 1e-4:
|
if learning_rate >= 1e-4:
|
||||||
learning_rate = learning_rate * 0.1
|
learning_rate = learning_rate * 0.1
|
||||||
|
else:
|
||||||
|
print("学习率不再下降")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -435,6 +438,8 @@ def train_step_two(step_one_model, step_two_model, train_data, train_label1, tra
|
||||||
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
||||||
if learning_rate >= 1e-4:
|
if learning_rate >= 1e-4:
|
||||||
learning_rate = learning_rate * 0.1
|
learning_rate = learning_rate * 0.1
|
||||||
|
else:
|
||||||
|
print("学习率不再下降")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -624,8 +629,8 @@ def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
# total_data = loadData.execute(N=feature_num, file_name=file_name)
|
total_data = loadData.execute(N=feature_num, file_name=file_name)
|
||||||
total_data=np.load("G:\data\SCADA数据\靖边8号处理后的数据\原始10SCADA数据/total_data.npy")
|
# total_data=np.load("G:\data\SCADA数据\靖边8号处理后的数据\原始10SCADA数据/total_data.npy")
|
||||||
total_data = normalization(data=total_data)
|
total_data = normalization(data=total_data)
|
||||||
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
|
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
|
||||||
total_data[:healthy_date, :], is_Healthy=True)
|
total_data[:healthy_date, :], is_Healthy=True)
|
||||||
|
|
@ -637,7 +642,7 @@ if __name__ == '__main__':
|
||||||
# train_step_one(train_data=train_data_healthy[:256, :, :], train_label1=train_label1_healthy[:256, :],
|
# train_step_one(train_data=train_data_healthy[:256, :, :], train_label1=train_label1_healthy[:256, :],
|
||||||
# train_label2=train_label2_healthy[:256, ])
|
# train_label2=train_label2_healthy[:256, ])
|
||||||
#### 模型训练
|
#### 模型训练
|
||||||
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
|
train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
|
||||||
|
|
||||||
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
|
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
|
||||||
step_one_model = Joint_Monitoring()
|
step_one_model = Joint_Monitoring()
|
||||||
|
|
|
||||||
|
|
@ -27,16 +27,16 @@ import random
|
||||||
'''超参数设置'''
|
'''超参数设置'''
|
||||||
time_stamp = 120
|
time_stamp = 120
|
||||||
feature_num = 10
|
feature_num = 10
|
||||||
batch_size = 16
|
batch_size = 32
|
||||||
learning_rate = 0.001
|
learning_rate = 0.001
|
||||||
EPOCH = 101
|
EPOCH = 101
|
||||||
model_name = "RNet"
|
model_name = "RNet_banda"
|
||||||
'''EWMA超参数'''
|
'''EWMA超参数'''
|
||||||
K = 18
|
K = 18
|
||||||
namuda = 0.01
|
namuda = 0.01
|
||||||
'''保存名称'''
|
'''保存名称'''
|
||||||
|
|
||||||
save_name = "./model/weight/{0}_timestamp{1}_feature{2}_weight_epoch2_loss0.007/weight".format(model_name,
|
save_name = "./model/weight/{0}/weight".format(model_name,
|
||||||
time_stamp,
|
time_stamp,
|
||||||
feature_num,
|
feature_num,
|
||||||
batch_size,
|
batch_size,
|
||||||
|
|
@ -58,7 +58,8 @@ save_step_two_name = "./model/two_weight/{0}_timestamp{1}_feature{2}_weight/weig
|
||||||
# batch_size,
|
# batch_size,
|
||||||
# EPOCH)
|
# EPOCH)
|
||||||
'''文件名'''
|
'''文件名'''
|
||||||
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
'''文件名'''
|
||||||
|
file_name = "G:\data\SCADA数据\SCADA_已处理_粤水电达坂城2020.1月-5月\风机15.csv"
|
||||||
|
|
||||||
'''
|
'''
|
||||||
文件说明:jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
|
文件说明:jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
|
||||||
|
|
@ -67,9 +68,9 @@ file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
||||||
'''
|
'''
|
||||||
'''文件参数'''
|
'''文件参数'''
|
||||||
# 最后正常的时间点
|
# 最后正常的时间点
|
||||||
healthy_date = 415548
|
healthy_date = 96748
|
||||||
# 最后异常的时间点
|
# 最后异常的时间点
|
||||||
unhealthy_date = 432153
|
unhealthy_date = 107116
|
||||||
# 异常容忍程度
|
# 异常容忍程度
|
||||||
unhealthy_patience = 5
|
unhealthy_patience = 5
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,460 @@
|
||||||
|
# _*_ coding: UTF-8 _*_
|
||||||
|
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2022/7/14 9:40
|
||||||
|
@Usage : 联合监测模型
|
||||||
|
@Desc : 将预测值放入分类器,分类器放两层逐渐递减的dense层
|
||||||
|
'''
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
import tensorflow.keras as keras
|
||||||
|
from tensorflow.keras import *
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
||||||
|
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
|
||||||
|
from condition_monitoring.data_deal import loadData
|
||||||
|
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
class Joint_Monitoring(keras.Model):
|
||||||
|
|
||||||
|
def __init__(self, conv_filter=20,epochs=50):
|
||||||
|
# 调用父类__init__()方法
|
||||||
|
super(Joint_Monitoring, self).__init__()
|
||||||
|
# step one
|
||||||
|
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
|
||||||
|
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
|
||||||
|
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
|
||||||
|
|
||||||
|
self.DACU2 = DynamicChannelAttention()
|
||||||
|
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
|
||||||
|
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
|
||||||
|
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
|
||||||
|
|
||||||
|
self.DACU3 = DynamicChannelAttention()
|
||||||
|
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
|
||||||
|
self.p1 = DynamicPooling(pool_size=2)
|
||||||
|
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
|
||||||
|
|
||||||
|
self.DACU4 = DynamicChannelAttention()
|
||||||
|
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
|
||||||
|
self.p2 = DynamicPooling(pool_size=4)
|
||||||
|
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
|
||||||
|
|
||||||
|
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
|
||||||
|
self.p3 = DynamicPooling(pool_size=2)
|
||||||
|
|
||||||
|
# step two
|
||||||
|
# 重现原数据
|
||||||
|
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||||
|
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||||
|
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||||
|
|
||||||
|
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||||
|
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||||
|
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||||
|
|
||||||
|
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||||
|
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||||
|
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||||
|
|
||||||
|
# step three
|
||||||
|
# 分类器
|
||||||
|
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||||
|
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||||
|
# tf.nn.softmax
|
||||||
|
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
|
||||||
|
|
||||||
|
# loss
|
||||||
|
self.train_loss = []
|
||||||
|
self.epoch=0
|
||||||
|
self.epochs=epochs
|
||||||
|
|
||||||
|
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
|
||||||
|
# step one
|
||||||
|
RepDCBlock1 = self.RepDCBlock1(inputs)
|
||||||
|
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
|
||||||
|
conv1 = self.conv1(RepDCBlock1)
|
||||||
|
conv1 = tf.nn.leaky_relu(conv1)
|
||||||
|
conv1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||||
|
upsample1 = self.upsample1(conv1)
|
||||||
|
|
||||||
|
DACU2 = self.DACU2(upsample1)
|
||||||
|
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
|
||||||
|
RepDCBlock2 = self.RepDCBlock2(DACU2)
|
||||||
|
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
|
||||||
|
conv2 = self.conv2(RepDCBlock2)
|
||||||
|
conv2 = tf.nn.leaky_relu(conv2)
|
||||||
|
conv2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||||
|
upsample2 = self.upsample2(conv2)
|
||||||
|
|
||||||
|
DACU3 = self.DACU3(upsample2)
|
||||||
|
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
|
||||||
|
RepDCBlock3 = self.RepDCBlock3(DACU3)
|
||||||
|
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
|
||||||
|
conv3 = self.conv3(RepDCBlock3)
|
||||||
|
conv3 = tf.nn.leaky_relu(conv3)
|
||||||
|
conv3 = tf.keras.layers.BatchNormalization()(conv3)
|
||||||
|
|
||||||
|
concat1 = tf.concat([conv2, conv3], axis=1)
|
||||||
|
|
||||||
|
DACU4 = self.DACU4(concat1)
|
||||||
|
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
|
||||||
|
RepDCBlock4 = self.RepDCBlock4(DACU4)
|
||||||
|
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
|
||||||
|
conv4 = self.conv4(RepDCBlock4)
|
||||||
|
conv4 = tf.nn.leaky_relu(conv4)
|
||||||
|
conv4 = tf.keras.layers.BatchNormalization()(conv4)
|
||||||
|
|
||||||
|
concat2 = tf.concat([conv1, conv4], axis=1)
|
||||||
|
|
||||||
|
RepDCBlock5 = self.RepDCBlock5(concat2)
|
||||||
|
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
|
||||||
|
|
||||||
|
output1 = []
|
||||||
|
output2 = []
|
||||||
|
output3 = []
|
||||||
|
output4 = []
|
||||||
|
|
||||||
|
if is_first_time:
|
||||||
|
# step two
|
||||||
|
# 重现原数据
|
||||||
|
# 接block3
|
||||||
|
GRU1 = self.GRU1(RepDCBlock3)
|
||||||
|
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||||
|
d1 = self.d1(GRU1)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output1 = self.output1(d1)
|
||||||
|
# 接block4
|
||||||
|
GRU2 = self.GRU2(RepDCBlock4)
|
||||||
|
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||||
|
d2 = self.d2(GRU2)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output2 = self.output2(d2)
|
||||||
|
# 接block5
|
||||||
|
GRU3 = self.GRU3(RepDCBlock5)
|
||||||
|
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||||
|
d3 = self.d3(GRU3)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output3 = self.output3(d3)
|
||||||
|
else:
|
||||||
|
GRU1 = self.GRU1(RepDCBlock3)
|
||||||
|
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||||
|
d1 = self.d1(GRU1)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output1 = self.output1(d1)
|
||||||
|
# 接block4
|
||||||
|
GRU2 = self.GRU2(RepDCBlock4)
|
||||||
|
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||||
|
d2 = self.d2(GRU2)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output2 = self.output2(d2)
|
||||||
|
# 接block5
|
||||||
|
GRU3 = self.GRU3(RepDCBlock5)
|
||||||
|
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||||
|
d3 = self.d3(GRU3)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output3 = self.output3(d3)
|
||||||
|
|
||||||
|
# 多尺度动态池化
|
||||||
|
# p1 = self.p1(output1)
|
||||||
|
# B, _, _ = p1.shape
|
||||||
|
# f1 = tf.reshape(p1, shape=[B, -1])
|
||||||
|
# p2 = self.p2(output2)
|
||||||
|
# f2 = tf.reshape(p2, shape=[B, -1])
|
||||||
|
# p3 = self.p3(output3)
|
||||||
|
# f3 = tf.reshape(p3, shape=[B, -1])
|
||||||
|
# step three
|
||||||
|
# 分类器
|
||||||
|
concat3 = tf.concat([output1, output2, output3], axis=1)
|
||||||
|
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
|
||||||
|
d4 = self.d4(concat3)
|
||||||
|
d5 = self.d5(d4)
|
||||||
|
# d4 = tf.keras.layers.BatchNormalization()(d4)
|
||||||
|
output4 = self.output4(d5)
|
||||||
|
|
||||||
|
return output1, output2, output3, output4
|
||||||
|
|
||||||
|
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
|
||||||
|
pred_5=None):
|
||||||
|
# step one
|
||||||
|
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
|
||||||
|
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
|
||||||
|
conv1 = self.conv1(RepDCBlock1)
|
||||||
|
conv1 = tf.nn.leaky_relu(conv1)
|
||||||
|
conv1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||||
|
upsample1 = self.upsample1(conv1)
|
||||||
|
|
||||||
|
DACU2 = self.DACU2(upsample1)
|
||||||
|
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
|
||||||
|
RepDCBlock2 = self.RepDCBlock2(DACU2)
|
||||||
|
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
|
||||||
|
conv2 = self.conv2(RepDCBlock2)
|
||||||
|
conv2 = tf.nn.leaky_relu(conv2)
|
||||||
|
conv2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||||
|
upsample2 = self.upsample2(conv2)
|
||||||
|
|
||||||
|
DACU3 = self.DACU3(upsample2)
|
||||||
|
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
|
||||||
|
RepDCBlock3 = self.RepDCBlock3(DACU3)
|
||||||
|
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
|
||||||
|
conv3 = self.conv3(RepDCBlock3)
|
||||||
|
conv3 = tf.nn.leaky_relu(conv3)
|
||||||
|
conv3 = tf.keras.layers.BatchNormalization()(conv3)
|
||||||
|
|
||||||
|
concat1 = tf.concat([conv2, conv3], axis=1)
|
||||||
|
|
||||||
|
DACU4 = self.DACU4(concat1)
|
||||||
|
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
|
||||||
|
RepDCBlock4 = self.RepDCBlock4(DACU4)
|
||||||
|
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
|
||||||
|
conv4 = self.conv4(RepDCBlock4)
|
||||||
|
conv4 = tf.nn.leaky_relu(conv4)
|
||||||
|
conv4 = tf.keras.layers.BatchNormalization()(conv4)
|
||||||
|
|
||||||
|
concat2 = tf.concat([conv1, conv4], axis=1)
|
||||||
|
|
||||||
|
RepDCBlock5 = self.RepDCBlock5(concat2)
|
||||||
|
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
|
||||||
|
|
||||||
|
if is_first_time:
|
||||||
|
# step two
|
||||||
|
# 重现原数据
|
||||||
|
# 接block3
|
||||||
|
GRU1 = self.GRU1(RepDCBlock3)
|
||||||
|
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||||
|
d1 = self.d1(GRU1)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output1 = self.output1(d1)
|
||||||
|
# 接block4
|
||||||
|
GRU2 = self.GRU2(RepDCBlock4)
|
||||||
|
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||||
|
d2 = self.d2(GRU2)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output2 = self.output2(d2)
|
||||||
|
# 接block5
|
||||||
|
GRU3 = self.GRU3(RepDCBlock5)
|
||||||
|
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||||
|
d3 = self.d3(GRU3)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output3 = self.output3(d3)
|
||||||
|
|
||||||
|
# reduce_mean降维计算均值
|
||||||
|
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
|
||||||
|
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
|
||||||
|
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
|
||||||
|
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
|
||||||
|
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
|
||||||
|
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
|
||||||
|
|
||||||
|
print("MSE_loss1:", MSE_loss1.numpy())
|
||||||
|
print("MSE_loss2:", MSE_loss2.numpy())
|
||||||
|
print("MSE_loss3:", MSE_loss3.numpy())
|
||||||
|
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
|
||||||
|
Accuracy_num = 0
|
||||||
|
|
||||||
|
else:
|
||||||
|
# step two
|
||||||
|
# 重现原数据
|
||||||
|
# 接block3
|
||||||
|
GRU1 = self.GRU1(RepDCBlock3)
|
||||||
|
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||||
|
d1 = self.d1(GRU1)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output1 = self.output1(d1)
|
||||||
|
# 接block4
|
||||||
|
GRU2 = self.GRU2(RepDCBlock4)
|
||||||
|
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||||
|
d2 = self.d2(GRU2)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output2 = self.output2(d2)
|
||||||
|
# 接block5
|
||||||
|
GRU3 = self.GRU3(RepDCBlock5)
|
||||||
|
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||||
|
d3 = self.d3(GRU3)
|
||||||
|
# tf.nn.softmax
|
||||||
|
output3 = self.output3(d3)
|
||||||
|
|
||||||
|
# 多尺度动态池化
|
||||||
|
# p1 = self.p1(output1)
|
||||||
|
# B, _, _ = p1.shape
|
||||||
|
# f1 = tf.reshape(p1, shape=[B, -1])
|
||||||
|
# p2 = self.p2(output2)
|
||||||
|
# f2 = tf.reshape(p2, shape=[B, -1])
|
||||||
|
# p3 = self.p3(output3)
|
||||||
|
# f3 = tf.reshape(p3, shape=[B, -1])
|
||||||
|
# step three
|
||||||
|
# 分类器
|
||||||
|
concat3 = tf.concat([output1, output2, output3], axis=1)
|
||||||
|
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
|
||||||
|
d4 = self.d4(concat3)
|
||||||
|
d5 = self.d5(d4)
|
||||||
|
# d4 = tf.keras.layers.BatchNormalization()(d4)
|
||||||
|
output4 = self.output4(d5)
|
||||||
|
|
||||||
|
# reduce_mean降维计算均值
|
||||||
|
a = 0.02
|
||||||
|
beta = 0.5 * math.cos(min(self.epoch * 2 / self.epochs, 1) * math.pi) + 0.5
|
||||||
|
MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
|
||||||
|
MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
|
||||||
|
MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
|
||||||
|
Cross_Entropy_loss = tf.reduce_mean(
|
||||||
|
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
|
||||||
|
|
||||||
|
print("MSE_loss:", MSE_loss.numpy())
|
||||||
|
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
|
||||||
|
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
|
||||||
|
loss = beta * MSE_loss + a * Cross_Entropy_loss
|
||||||
|
return loss, Accuracy_num
|
||||||
|
|
||||||
|
def get_Accuracy(self, output, label):
|
||||||
|
|
||||||
|
predict_label = tf.round(output)
|
||||||
|
label = tf.cast(label, dtype=tf.float32)
|
||||||
|
|
||||||
|
t = np.array(label - predict_label)
|
||||||
|
|
||||||
|
b = t[t[:] == 0]
|
||||||
|
|
||||||
|
return b.__len__()
|
||||||
|
|
||||||
|
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
|
||||||
|
pred_5=None):
|
||||||
|
with tf.GradientTape() as tape:
|
||||||
|
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
|
||||||
|
# tape.watch(self.variables)
|
||||||
|
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
|
||||||
|
pred_3=pred_3,
|
||||||
|
pred_4=pred_4, pred_5=pred_5)
|
||||||
|
# 保存一下loss,用于输出
|
||||||
|
self.train_loss = L
|
||||||
|
g = tape.gradient(L, self.variables)
|
||||||
|
return g, Accuracy_num
|
||||||
|
|
||||||
|
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
|
||||||
|
pred_4=None, pred_5=None,epoch=0):
|
||||||
|
self.epoch=epoch
|
||||||
|
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
|
||||||
|
pred_3=pred_3,
|
||||||
|
pred_4=pred_4, pred_5=pred_5)
|
||||||
|
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
|
||||||
|
return self.train_loss, Accuracy_num
|
||||||
|
|
||||||
|
# 暂时只支持batch_size等于1,不然要传z比较麻烦
|
||||||
|
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
|
||||||
|
step_one_model=None,epoch=0):
|
||||||
|
val_loss = []
|
||||||
|
self.epoch=epoch
|
||||||
|
accuracy_num = 0
|
||||||
|
output1 = 0
|
||||||
|
output2 = 0
|
||||||
|
output3 = 0
|
||||||
|
z = 1
|
||||||
|
size, length, dims = val_data.shape
|
||||||
|
if batch_size == None:
|
||||||
|
batch_size = self.batch_size
|
||||||
|
for epoch in range(0, size - batch_size, batch_size):
|
||||||
|
each_val_data = val_data[epoch:epoch + batch_size, :, :]
|
||||||
|
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
|
||||||
|
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
|
||||||
|
# each_val_data = tf.expand_dims(each_val_data, axis=0)
|
||||||
|
# each_val_query = tf.expand_dims(each_val_query, axis=0)
|
||||||
|
# each_val_label = tf.expand_dims(each_val_label, axis=0)
|
||||||
|
if not is_first_time:
|
||||||
|
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
|
||||||
|
|
||||||
|
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
|
||||||
|
is_first_time=is_first_time,
|
||||||
|
pred_3=output1, pred_4=output2, pred_5=output3)
|
||||||
|
accuracy_num += each_accuracy_num
|
||||||
|
val_loss.append(each_loss)
|
||||||
|
z += 1
|
||||||
|
|
||||||
|
val_accuracy = accuracy_num / ((z - 1) * batch_size)
|
||||||
|
val_total_loss = tf.reduce_mean(val_loss)
|
||||||
|
return val_total_loss, val_accuracy
|
||||||
|
|
||||||
|
|
||||||
|
class RevConv(keras.layers.Layer):
|
||||||
|
|
||||||
|
def __init__(self, kernel_size=3):
|
||||||
|
# 调用父类__init__()方法
|
||||||
|
super(RevConv, self).__init__()
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
# 自定义层里面的属性
|
||||||
|
config = (
|
||||||
|
{
|
||||||
|
'kernel_size': self.kernel_size
|
||||||
|
}
|
||||||
|
)
|
||||||
|
base_config = super(RevConv, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
def build(self, input_shape):
|
||||||
|
# print(input_shape)
|
||||||
|
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
|
||||||
|
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
|
||||||
|
padding='causal',
|
||||||
|
dilation_rate=4)
|
||||||
|
|
||||||
|
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
|
||||||
|
dilation_rate=4)
|
||||||
|
# self.b2 = tf.keras.layers.BatchNormalization()
|
||||||
|
|
||||||
|
# self.b3 = tf.keras.layers.BatchNormalization()
|
||||||
|
|
||||||
|
# out = tf.keras.layers.Add()([b1, b2, b3])
|
||||||
|
# out = tf.nn.relu(out)
|
||||||
|
|
||||||
|
def call(self, inputs, **kwargs):
|
||||||
|
conv1 = self.conv1(inputs)
|
||||||
|
b1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||||
|
b1 = tf.nn.leaky_relu(b1)
|
||||||
|
# b1 = self.b1
|
||||||
|
|
||||||
|
conv2 = self.conv2(inputs)
|
||||||
|
b2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||||
|
b2 = tf.nn.leaky_relu(b2)
|
||||||
|
|
||||||
|
b3 = tf.keras.layers.BatchNormalization()(inputs)
|
||||||
|
|
||||||
|
out = tf.keras.layers.Add()([b1, b2, b3])
|
||||||
|
out = tf.nn.relu(out)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class RevConvBlock(keras.layers.Layer):
|
||||||
|
|
||||||
|
def __init__(self, num: int = 3, kernel_size=3):
|
||||||
|
# 调用父类__init__()方法
|
||||||
|
super(RevConvBlock, self).__init__()
|
||||||
|
self.num = num
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.L = []
|
||||||
|
for i in range(num):
|
||||||
|
RepVGG = RevConv(kernel_size=kernel_size)
|
||||||
|
self.L.append(RepVGG)
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
# 自定义层里面的属性
|
||||||
|
config = (
|
||||||
|
{
|
||||||
|
'kernel_size': self.kernel_size,
|
||||||
|
'num': self.num
|
||||||
|
}
|
||||||
|
)
|
||||||
|
base_config = super(RevConvBlock, self).get_config()
|
||||||
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
def call(self, inputs, **kwargs):
|
||||||
|
for i in range(self.num):
|
||||||
|
inputs = self.L[i](inputs)
|
||||||
|
return inputs
|
||||||
Loading…
Reference in New Issue