20231214爬虫学习更新
|
|
@ -0,0 +1,104 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 19:15
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from os.path import exists
|
||||||
|
from os import makedirs
|
||||||
|
import json
|
||||||
|
import asyncio
|
||||||
|
from pyppeteer import launch
|
||||||
|
from pyppeteer.errors import TimeoutError
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(levelname)s: %(message)s')
|
||||||
|
|
||||||
|
INDEX_URL = 'https://spa2.scrape.center/page/{page}'
|
||||||
|
TIMEOUT = 10
|
||||||
|
TOTAL_PAGE = 10
|
||||||
|
RESULTS_DIR = 'results'
|
||||||
|
WINDOW_WIDTH, WINDOW_HEIGHT = 1366, 768
|
||||||
|
|
||||||
|
exists(RESULTS_DIR) or makedirs(RESULTS_DIR)
|
||||||
|
|
||||||
|
browser, tab = None, None
|
||||||
|
HEADLESS = True
|
||||||
|
|
||||||
|
|
||||||
|
async def init():
|
||||||
|
global browser, tab
|
||||||
|
browser = await launch(headless=HEADLESS,
|
||||||
|
args=['--disable-infobars', f'--window-size={WINDOW_WIDTH},{WINDOW_HEIGHT}'])
|
||||||
|
tab = await browser.newPage()
|
||||||
|
await tab.setViewport({'width': WINDOW_WIDTH, 'height': WINDOW_HEIGHT})
|
||||||
|
|
||||||
|
|
||||||
|
async def scrape_page(url, selector):
|
||||||
|
logging.info('scraping %s', url)
|
||||||
|
try:
|
||||||
|
await tab.goto(url)
|
||||||
|
await tab.waitForSelector(selector, options={
|
||||||
|
'timeout': TIMEOUT * 1000
|
||||||
|
})
|
||||||
|
except TimeoutError:
|
||||||
|
logging.error('error occurred while scraping %s', url, exc_info=True)
|
||||||
|
|
||||||
|
|
||||||
|
async def scrape_index(page):
|
||||||
|
url = INDEX_URL.format(page=page)
|
||||||
|
await scrape_page(url, '.item .name')
|
||||||
|
|
||||||
|
|
||||||
|
async def parse_index():
|
||||||
|
return await tab.querySelectorAllEval('.item .name', 'nodes => nodes.map(node => node.href)')
|
||||||
|
|
||||||
|
|
||||||
|
async def scrape_detail(url):
|
||||||
|
await scrape_page(url, 'h2')
|
||||||
|
|
||||||
|
|
||||||
|
async def parse_detail():
|
||||||
|
url = tab.url
|
||||||
|
name = await tab.querySelectorEval('h2', 'node => node.innerText')
|
||||||
|
categories = await tab.querySelectorAllEval('.categories button span', 'nodes => nodes.map(node => node.innerText)')
|
||||||
|
cover = await tab.querySelectorEval('.cover', 'node => node.src')
|
||||||
|
score = await tab.querySelectorEval('.score', 'node => node.innerText')
|
||||||
|
drama = await tab.querySelectorEval('.drama p', 'node => node.innerText')
|
||||||
|
return {
|
||||||
|
'url': url,
|
||||||
|
'name': name,
|
||||||
|
'categories': categories,
|
||||||
|
'cover': cover,
|
||||||
|
'score': score,
|
||||||
|
'drama': drama
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
async def save_data(data):
|
||||||
|
name = data.get('name')
|
||||||
|
data_path = f'{RESULTS_DIR}/{name}.json'
|
||||||
|
json.dump(data, open(data_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
await init()
|
||||||
|
try:
|
||||||
|
for page in range(1, TOTAL_PAGE + 1):
|
||||||
|
await scrape_index(page)
|
||||||
|
detail_urls = await parse_index()
|
||||||
|
for detail_url in detail_urls:
|
||||||
|
await scrape_detail(detail_url)
|
||||||
|
detail_data = await parse_detail()
|
||||||
|
logging.info('data %s', detail_data)
|
||||||
|
await save_data(detail_data)
|
||||||
|
finally:
|
||||||
|
await browser.close()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
asyncio.get_event_loop().run_until_complete(main())
|
||||||
|
|
@ -0,0 +1,111 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 15:58
|
||||||
|
@Usage : 使用Selenium实战爬取 https://spa2.scrape.center/
|
||||||
|
@Desc : 该网站爬取详情页时存在一个token,这个token的实现逻辑可能不确定,并且随事件发生变化,
|
||||||
|
因此需要使用Selenium模拟浏览器操作跳过这段逻辑
|
||||||
|
'''
|
||||||
|
from selenium import webdriver
|
||||||
|
from selenium.common.exceptions import TimeoutException
|
||||||
|
from selenium.webdriver.support import expected_conditions as EC
|
||||||
|
from selenium.webdriver.common.by import By
|
||||||
|
from selenium.webdriver.support.wait import WebDriverWait
|
||||||
|
from os import makedirs
|
||||||
|
from os.path import exists
|
||||||
|
import logging
|
||||||
|
from urllib.parse import urljoin
|
||||||
|
import json
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO,
|
||||||
|
format='%(asctime)s - %(levelname)s: %(message)s')
|
||||||
|
|
||||||
|
INDEX_URL = 'https://spa2.scrape.center/page/{page}'
|
||||||
|
Timeout = 10
|
||||||
|
Total_page = 10
|
||||||
|
RESULTS_DIR = 'result'
|
||||||
|
|
||||||
|
exists(RESULTS_DIR) or makedirs(RESULTS_DIR)
|
||||||
|
|
||||||
|
# 防止有一些网站设置反屏蔽手段
|
||||||
|
options = webdriver.ChromeOptions()
|
||||||
|
options.add_experimental_option('excludeSwitches', ['enable-automation'])
|
||||||
|
options.add_experimental_option('useAutomationExtension', False)
|
||||||
|
|
||||||
|
# 显示设置超时时间
|
||||||
|
browser = webdriver.Chrome(options=options)
|
||||||
|
wait = WebDriverWait(browser, Timeout)
|
||||||
|
|
||||||
|
|
||||||
|
# 爬取网页
|
||||||
|
def scrape_page(url, condition, locator):
|
||||||
|
logging.info('scraping %s', url)
|
||||||
|
try:
|
||||||
|
browser.get(url)
|
||||||
|
# 设置等待
|
||||||
|
wait.until(condition(locator))
|
||||||
|
except TimeoutException:
|
||||||
|
logging.error('error occurred while scraping %s', url, exc_info=True)
|
||||||
|
|
||||||
|
|
||||||
|
def scrape_index(page):
|
||||||
|
url = INDEX_URL.format(page=page)
|
||||||
|
# 设置等待条件为当所有的index下面的子item都出来之后
|
||||||
|
scrape_page(url, EC.visibility_of_all_elements_located, locator=(By.CSS_SELECTOR, '#index .item'))
|
||||||
|
|
||||||
|
|
||||||
|
def parse_index():
|
||||||
|
titles = browser.find_elements(By.CSS_SELECTOR, '#index .item .name')
|
||||||
|
for title in titles:
|
||||||
|
href = title.get_attribute("href")
|
||||||
|
yield urljoin(INDEX_URL, href)
|
||||||
|
|
||||||
|
|
||||||
|
def scrape_detail(url):
|
||||||
|
return scrape_page(url, EC.visibility_of_element_located, (By.TAG_NAME, 'h2'))
|
||||||
|
|
||||||
|
|
||||||
|
def parse_detail():
|
||||||
|
url = browser.current_url
|
||||||
|
name = browser.find_element(By.TAG_NAME, 'h2').text
|
||||||
|
category = [element.text for element in browser.find_elements(By.CSS_SELECTOR, '.categories button span')]
|
||||||
|
cover = browser.find_element(By.CLASS_NAME, 'cover').get_attribute("src")
|
||||||
|
score = browser.find_element(By.CLASS_NAME, 'score').text
|
||||||
|
drama = browser.find_element(By.CSS_SELECTOR, '.drama p').text
|
||||||
|
return {
|
||||||
|
"url": url,
|
||||||
|
"name": name,
|
||||||
|
"category": category,
|
||||||
|
"cover": cover,
|
||||||
|
"score": score,
|
||||||
|
"drama": drama
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def save_data(data):
|
||||||
|
name = data.get('name')
|
||||||
|
data_path = f'{RESULTS_DIR}/{name}.json'
|
||||||
|
json.dump(data, open(data_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
def main():
|
||||||
|
try:
|
||||||
|
|
||||||
|
for page in range(1, Total_page + 1):
|
||||||
|
scrape_index(page)
|
||||||
|
# 页面加载完毕之后,获取对应的url
|
||||||
|
detail_urls=list(parse_index())
|
||||||
|
# logging.info('detail data %s', list(detail_urls))
|
||||||
|
# 遍历所有的detail_urls,获取详情页信息
|
||||||
|
for detail_url in detail_urls:
|
||||||
|
scrape_detail(detail_url)
|
||||||
|
detail_info = parse_detail()
|
||||||
|
logging.info('detail info %s', detail_info)
|
||||||
|
save_data(detail_info)
|
||||||
|
|
||||||
|
finally:
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 19:32
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,59 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 19:32
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
from selenium import webdriver
|
||||||
|
from pyquery import PyQuery as pq
|
||||||
|
from selenium.webdriver.common.by import By
|
||||||
|
from selenium.webdriver.support import expected_conditions as EC
|
||||||
|
from selenium.webdriver.support.wait import WebDriverWait
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
# 解析名字,排序获得正确的顺序
|
||||||
|
def parse_name(name_html):
|
||||||
|
chars = name_html('.char')
|
||||||
|
items = []
|
||||||
|
for char in chars.items():
|
||||||
|
items.append({
|
||||||
|
'text': char.text().strip(),
|
||||||
|
'left': int(re.search('(\d+)px', char.attr('style')).group(1))
|
||||||
|
})
|
||||||
|
items = sorted(items, key=lambda x: x['left'], reverse=False)
|
||||||
|
return ''.join([item.get('text') for item in items])
|
||||||
|
|
||||||
|
|
||||||
|
# 判断如果是完整的就不进行下述操作
|
||||||
|
def parse_name_whole(name_html):
|
||||||
|
has_whole = name_html('.whole')
|
||||||
|
if has_whole:
|
||||||
|
return name_html.text()
|
||||||
|
else:
|
||||||
|
chars = name_html('.char')
|
||||||
|
items = []
|
||||||
|
for char in chars.items():
|
||||||
|
items.append({
|
||||||
|
'text': char.text().strip(),
|
||||||
|
'left': int(re.search('(\d+)px', char.attr('style')).group(1))
|
||||||
|
})
|
||||||
|
items = sorted(items, key=lambda x: x['left'], reverse=False)
|
||||||
|
return ''.join([item.get('text') for item in items])
|
||||||
|
|
||||||
|
|
||||||
|
browser = webdriver.Chrome()
|
||||||
|
browser.get('https://antispider3.scrape.center/')
|
||||||
|
WebDriverWait(browser, 10) \
|
||||||
|
.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.item')))
|
||||||
|
html = browser.page_source
|
||||||
|
doc = pq(html)
|
||||||
|
names = doc('.item .name')
|
||||||
|
|
||||||
|
for name_html in names.items():
|
||||||
|
name = parse_name_whole(name_html)
|
||||||
|
print(name)
|
||||||
|
browser.close()
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 13:27
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,40 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 13:34
|
||||||
|
@Usage : playwright基本使用
|
||||||
|
@Desc :
|
||||||
|
@参考:https://github.dev/Python3WebSpider/PlaywrightTest
|
||||||
|
'''
|
||||||
|
|
||||||
|
# playwright既支持Pyppetter的异步模式,又支持selenium的同步模式
|
||||||
|
import asyncio
|
||||||
|
# 同步模式
|
||||||
|
from playwright.sync_api import sync_playwright
|
||||||
|
|
||||||
|
with sync_playwright() as p:
|
||||||
|
for browser_type in [p.chromium, p.firefox, p.webkit]:
|
||||||
|
browser = browser_type.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
page.goto('https://www.baidu.com')
|
||||||
|
page.screenshot(path=f'screenshot-{browser_type.name}.png')
|
||||||
|
print(page.title())
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
|
||||||
|
# 异步模式
|
||||||
|
from playwright.async_api import async_playwright
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
async with async_playwright() as p:
|
||||||
|
for browser_type in [p.chromium, p.firefox, p.webkit]:
|
||||||
|
browser = await browser_type.launch(headless=False)
|
||||||
|
page = await browser.new_page()
|
||||||
|
await page.goto('https://www.baidu.com')
|
||||||
|
await page.screenshot(path=f'screenshot-{browser_type.name}.png')
|
||||||
|
print(await page.title())
|
||||||
|
await browser.close()
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
|
@ -0,0 +1,34 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 14:00
|
||||||
|
@Usage :
|
||||||
|
@Desc :playWright有一个强大的功能,是可以录制我们在浏览器中的操作并自动生成代码
|
||||||
|
'''
|
||||||
|
|
||||||
|
from playwright.sync_api import Playwright, sync_playwright, expect
|
||||||
|
|
||||||
|
|
||||||
|
def run(playwright: Playwright) -> None:
|
||||||
|
browser = playwright.firefox.launch(headless=False)
|
||||||
|
# 这里使用context而不是browser,可以让每个context都是一个独立的上下文环境,资源隔离
|
||||||
|
context = browser.new_context()
|
||||||
|
page = context.new_page()
|
||||||
|
page.goto("https://www.baidu.com/")
|
||||||
|
page.locator("#kw").click()
|
||||||
|
page.locator("#kw").fill("python")
|
||||||
|
page.get_by_role("button", name="百度一下").click()
|
||||||
|
page.get_by_role("button", name="百度一下").click()
|
||||||
|
page.locator("#kw").click()
|
||||||
|
page.locator("#kw").fill("nba")
|
||||||
|
page.get_by_role("button", name="百度一下").click()
|
||||||
|
page.close()
|
||||||
|
|
||||||
|
# ---------------------
|
||||||
|
context.close()
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
|
||||||
|
with sync_playwright() as playwright:
|
||||||
|
run(playwright)
|
||||||
|
|
@ -0,0 +1,44 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 14:40
|
||||||
|
@Usage :
|
||||||
|
@Desc :playwright还支持移动端浏览器
|
||||||
|
'''
|
||||||
|
|
||||||
|
import time
|
||||||
|
from playwright.sync_api import sync_playwright
|
||||||
|
|
||||||
|
# 模拟打开iPhone 12 Pro Max的safari浏览器
|
||||||
|
with sync_playwright() as p:
|
||||||
|
iphone_12_pro_max = p.devices['iPhone 12 Pro Max']
|
||||||
|
browser = p.webkit.launch(headless=False)
|
||||||
|
context = browser.new_context(
|
||||||
|
**iphone_12_pro_max,
|
||||||
|
locale='zh-CN',
|
||||||
|
)
|
||||||
|
page = context.new_page()
|
||||||
|
page.goto('https://www.whatismybrowser.com/')
|
||||||
|
# 等待页面的某个状态完成,这里传入的state是networkidle,表示网络空闲状态
|
||||||
|
page.wait_for_load_state(state='networkidle')
|
||||||
|
page.screenshot(path='browser-info.png')
|
||||||
|
time.sleep(10)
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
|
||||||
|
with sync_playwright() as p:
|
||||||
|
iphone_12_pro_max = p.devices['iPhone 12 Pro Max']
|
||||||
|
browser = p.webkit.launch(headless=False)
|
||||||
|
context = browser.new_context(
|
||||||
|
**iphone_12_pro_max,
|
||||||
|
locale='zh-CN',
|
||||||
|
geolocation={'longitude': 116.39014, 'latitude': 39.913904},
|
||||||
|
permissions=['geolocation']
|
||||||
|
)
|
||||||
|
page = context.new_page()
|
||||||
|
page.goto('https://amap.com')
|
||||||
|
page.wait_for_load_state(state='networkidle')
|
||||||
|
page.screenshot(path='location-iphone.png')
|
||||||
|
time.sleep(10)
|
||||||
|
browser.close()
|
||||||
|
|
@ -0,0 +1,100 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 15:12
|
||||||
|
@Usage :
|
||||||
|
@Desc : playwright常用操作
|
||||||
|
'''
|
||||||
|
|
||||||
|
from playwright.sync_api import sync_playwright
|
||||||
|
|
||||||
|
|
||||||
|
# 事件监听
|
||||||
|
def on_response(response):
|
||||||
|
print(f'Statue {response.status}: {response.url}')
|
||||||
|
|
||||||
|
|
||||||
|
# 截获ajax命令
|
||||||
|
def on_response1(response):
|
||||||
|
if '/api/movie/' in response.url and response.status == 200:
|
||||||
|
print(response.json())
|
||||||
|
|
||||||
|
|
||||||
|
with sync_playwright() as p:
|
||||||
|
browser = p.chromium.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
# 监听response时间,每次网络请求得到响应的时候会触发这个事件
|
||||||
|
# page.on('response', on_response)
|
||||||
|
page.on('response', on_response1)
|
||||||
|
page.goto('https://spa6.scrape.center/')
|
||||||
|
page.wait_for_load_state('networkidle')
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
获取页面源代码
|
||||||
|
with sync_playwright() as p:
|
||||||
|
browser = p.chromium.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
page.goto('https://spa6.scrape.center/')
|
||||||
|
page.wait_for_load_state('networkidle')
|
||||||
|
html = page.content()
|
||||||
|
print(html)
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
# 获取节点内容
|
||||||
|
with sync_playwright() as p:
|
||||||
|
browser = p.chromium.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
page.goto('https://spa6.scrape.center/')
|
||||||
|
page.wait_for_load_state('networkidle')
|
||||||
|
# 代表查找class为name的a节点,第二个参数传href表示获取超链接的内容
|
||||||
|
href = page.get_attribute('a.name', 'href')
|
||||||
|
print(href)
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
# 获取多个节点
|
||||||
|
with sync_playwright() as p:
|
||||||
|
browser = p.chromium.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
page.goto('https://spa6.scrape.center/')
|
||||||
|
page.wait_for_load_state('networkidle')
|
||||||
|
elements = page.query_selector_all('a.name')
|
||||||
|
for element in elements:
|
||||||
|
print(element.get_attribute('href'))
|
||||||
|
print(element.text_content())
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
# 网络拦截
|
||||||
|
import re
|
||||||
|
|
||||||
|
with sync_playwright() as p:
|
||||||
|
browser = p.chromium.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
|
||||||
|
|
||||||
|
def canel_request(route, request):
|
||||||
|
route.abort()
|
||||||
|
|
||||||
|
|
||||||
|
page.route(re.compile(r"(\.png)|(\.jpg)"), canel_request)
|
||||||
|
page.goto("https://spa6.scrape.center/")
|
||||||
|
page.wait_for_load_state("networkidle")
|
||||||
|
page.screenshot(path='no_picture.png')
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
# 拦截之后填充自己的
|
||||||
|
import time
|
||||||
|
|
||||||
|
with sync_playwright() as p:
|
||||||
|
browser = p.chromium.launch(headless=False)
|
||||||
|
page = browser.new_page()
|
||||||
|
|
||||||
|
|
||||||
|
def modify_response(route, request):
|
||||||
|
route.fulfill(path="./custom_response.html")
|
||||||
|
|
||||||
|
|
||||||
|
page.route('/', modify_response)
|
||||||
|
page.goto("https://spa6.scrape.center/")
|
||||||
|
time.sleep(10)
|
||||||
|
browser.close()
|
||||||
|
|
@ -0,0 +1,24 @@
|
||||||
|
from playwright.sync_api import Playwright, sync_playwright, expect
|
||||||
|
|
||||||
|
|
||||||
|
def run(playwright: Playwright) -> None:
|
||||||
|
browser = playwright.firefox.launch(headless=False)
|
||||||
|
context = browser.new_context()
|
||||||
|
page = context.new_page()
|
||||||
|
page.goto("https://www.baidu.com/")
|
||||||
|
page.locator("#kw").click()
|
||||||
|
page.locator("#kw").fill("python")
|
||||||
|
page.get_by_role("button", name="百度一下").click()
|
||||||
|
page.get_by_role("button", name="百度一下").click()
|
||||||
|
page.locator("#kw").click()
|
||||||
|
page.locator("#kw").fill("nba")
|
||||||
|
page.get_by_role("button", name="百度一下").click()
|
||||||
|
page.close()
|
||||||
|
|
||||||
|
# ---------------------
|
||||||
|
context.close()
|
||||||
|
browser.close()
|
||||||
|
|
||||||
|
|
||||||
|
with sync_playwright() as playwright:
|
||||||
|
run(playwright)
|
||||||
|
|
@ -20,3 +20,4 @@ input.clear() # 清空文字
|
||||||
input.send_keys('iPad')
|
input.send_keys('iPad')
|
||||||
button = browser.find_element(By.CLASS_NAME, 'btn-search')
|
button = browser.find_element(By.CLASS_NAME, 'btn-search')
|
||||||
button.click() # 点击搜索
|
button.click() # 点击搜索
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 20:07
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,28 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 20:07
|
||||||
|
@Usage :
|
||||||
|
@Desc :字体反扒测试
|
||||||
|
'''
|
||||||
|
|
||||||
|
from selenium import webdriver
|
||||||
|
from pyquery import PyQuery as pq
|
||||||
|
from selenium.webdriver.common.by import By
|
||||||
|
from selenium.webdriver.support import expected_conditions as EC
|
||||||
|
from selenium.webdriver.support.wait import WebDriverWait
|
||||||
|
|
||||||
|
browser = webdriver.Chrome()
|
||||||
|
browser.get('https://antispider4.scrape.center/')
|
||||||
|
WebDriverWait(browser, 10) \
|
||||||
|
.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.item')))
|
||||||
|
html = browser.page_source
|
||||||
|
doc = pq(html)
|
||||||
|
items = doc('.item')
|
||||||
|
for item in items.items():
|
||||||
|
name = item('.name').text()
|
||||||
|
categories = [o.text() for o in item('.categories button').items()]
|
||||||
|
score = item('.score').text()
|
||||||
|
print(f'name: {name} categories: {categories} score: {score}')
|
||||||
|
browser.close()
|
||||||
|
|
@ -0,0 +1,20 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 20:20
|
||||||
|
@Usage :
|
||||||
|
@Desc :尝试解析对应的css源文件,来获取对应的我们想要的
|
||||||
|
'''
|
||||||
|
|
||||||
|
import re
|
||||||
|
import requests
|
||||||
|
url = 'https://antispider4.scrape.center/css/app.654ba59e.css'
|
||||||
|
|
||||||
|
|
||||||
|
response = requests.get(url)
|
||||||
|
pattern = re.compile('.icon-(.*?):before\{content:"(.*?)"\}')
|
||||||
|
results = re.findall(pattern, response.text)
|
||||||
|
icon_map = {item[0]: item[1] for item in results}
|
||||||
|
print(icon_map['789'])
|
||||||
|
print(icon_map['437'])
|
||||||
|
|
@ -0,0 +1,49 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/7 20:22
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
from selenium import webdriver
|
||||||
|
from pyquery import PyQuery as pq
|
||||||
|
from selenium.webdriver.common.by import By
|
||||||
|
from selenium.webdriver.support import expected_conditions as EC
|
||||||
|
from selenium.webdriver.support.wait import WebDriverWait
|
||||||
|
import re
|
||||||
|
import requests
|
||||||
|
url = 'https://antispider4.scrape.center/css/app.654ba59e.css'
|
||||||
|
|
||||||
|
|
||||||
|
response = requests.get(url)
|
||||||
|
pattern = re.compile('.icon-(.*?):before\{content:"(.*?)"\}')
|
||||||
|
results = re.findall(pattern, response.text)
|
||||||
|
icon_map = {item[0]: item[1] for item in results}
|
||||||
|
|
||||||
|
|
||||||
|
def parse_score(item):
|
||||||
|
elements = item('.icon')
|
||||||
|
icon_values = []
|
||||||
|
for element in elements.items():
|
||||||
|
class_name = (element.attr('class'))
|
||||||
|
icon_key = re.search('icon-(\d+)', class_name).group(1)
|
||||||
|
icon_value = icon_map.get(icon_key)
|
||||||
|
icon_values.append(icon_value)
|
||||||
|
return ''.join(icon_values)
|
||||||
|
|
||||||
|
|
||||||
|
browser = webdriver.Chrome()
|
||||||
|
browser.get('https://antispider4.scrape.center/')
|
||||||
|
WebDriverWait(browser, 10) \
|
||||||
|
.until(EC.presence_of_all_elements_located((By.CSS_SELECTOR, '.item')))
|
||||||
|
html = browser.page_source
|
||||||
|
doc = pq(html)
|
||||||
|
items = doc('.item')
|
||||||
|
for item in items.items():
|
||||||
|
name = item('.name').text()
|
||||||
|
categories = [o.text() for o in item('.categories button').items()]
|
||||||
|
score = parse_score(item)
|
||||||
|
print(f'name: {name} categories: {categories} score: {score}')
|
||||||
|
browser.close()
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 17:17
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,16 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 19:31
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
import tesserocr
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
image = Image.open('image.png')
|
||||||
|
result = tesserocr.image_to_text(image)
|
||||||
|
print(result) # 打印:19 b 2
|
||||||
|
|
@ -0,0 +1,26 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 19:35
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
import tesserocr
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
image = Image.open('image.png')
|
||||||
|
|
||||||
|
print(np.array(image).shape)
|
||||||
|
print(image.mode)
|
||||||
|
|
||||||
|
image = image.convert('L')
|
||||||
|
threshold = 100
|
||||||
|
array = np.array(image)
|
||||||
|
|
||||||
|
array = np.where(array > threshold, 255, 0)
|
||||||
|
image = Image.fromarray(array.astype('uint8'))
|
||||||
|
|
||||||
|
# image.show()
|
||||||
|
print(tesserocr.image_to_text(image))
|
||||||
|
|
@ -0,0 +1,65 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 19:53
|
||||||
|
@Usage :
|
||||||
|
@Desc : 尝试使用selenium和ocr技术去爬取 https://captcha7.scrape.center/
|
||||||
|
@参考:https://github.com/Python3WebSpider/CrackImageCaptcha/blob/master/main.py
|
||||||
|
'''
|
||||||
|
|
||||||
|
from selenium import webdriver
|
||||||
|
from selenium.webdriver.common.by import By
|
||||||
|
from selenium.webdriver.support.wait import WebDriverWait
|
||||||
|
from selenium.webdriver.support import expected_conditions as EC
|
||||||
|
from selenium.common.exceptions import TimeoutException
|
||||||
|
from io import BytesIO
|
||||||
|
from PIL import Image
|
||||||
|
import numpy as np
|
||||||
|
import tesserocr
|
||||||
|
import re
|
||||||
|
from retrying import retry
|
||||||
|
import time
|
||||||
|
|
||||||
|
browser = webdriver.Chrome()
|
||||||
|
|
||||||
|
|
||||||
|
# 预处理,提高图片识别率
|
||||||
|
def preProcess(image):
|
||||||
|
image = image.convert('L')
|
||||||
|
array = np.array(image)
|
||||||
|
array = np.where(array > 50, 255, 0)
|
||||||
|
return Image.fromarray(array.astype('uint8'))
|
||||||
|
|
||||||
|
|
||||||
|
@retry(stop_max_attempt_number=10, retry_on_result=lambda x: x is False)
|
||||||
|
def login():
|
||||||
|
browser.get('https://captcha7.scrape.center/')
|
||||||
|
# send_keys输入
|
||||||
|
browser.find_element(By.CSS_SELECTOR, ".username input[type='text']").send_keys('admin')
|
||||||
|
browser.find_element(By.CSS_SELECTOR, ".password input[type='password']").send_keys('admin')
|
||||||
|
captcha = browser.find_element(By.CSS_SELECTOR, "#captcha")
|
||||||
|
image = Image.open(BytesIO(captcha.screenshot_as_png))
|
||||||
|
print("处理前:",tesserocr.image_to_text(image))
|
||||||
|
# 预处理提高识别率
|
||||||
|
# image = preProcess(image)
|
||||||
|
# captcha = tesserocr.image_to_text(image)
|
||||||
|
# 模式匹配,消除空格等
|
||||||
|
captcha=tesserocr.image_to_text(image)
|
||||||
|
print("处理后:",captcha)
|
||||||
|
captcha = re.sub(' ', '', captcha)
|
||||||
|
print("模式匹配后",captcha)
|
||||||
|
browser.find_element(By.CSS_SELECTOR, ".captcha input[type='text']").send_keys(captcha)
|
||||||
|
# 点击登录
|
||||||
|
browser.find_element(By.CSS_SELECTOR, '.login').click()
|
||||||
|
try:
|
||||||
|
WebDriverWait(browser, 10).until(EC.presence_of_element_located((By.XPATH, '//h2[contains(.,"登录成功")]')))
|
||||||
|
time.sleep(5)
|
||||||
|
browser.close()
|
||||||
|
return True
|
||||||
|
except TimeoutException:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
login()
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 17:17
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 20:49
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,85 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/11 20:59
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
@参考:https://github.com/Python3WebSpider/CrackSlideCaptcha/blob/cv/main.py
|
||||||
|
'''
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
GAUSSIAN_BLUR_KERNEL_SIZE = (5, 5)
|
||||||
|
GAUSSIAN_BLUR_SIGMA_X = 0
|
||||||
|
CANNY_THRESHOLD1 = 200
|
||||||
|
CANNY_THRESHOLD2 = 450
|
||||||
|
|
||||||
|
|
||||||
|
# 得到高斯滤波之后的图
|
||||||
|
def get_gaussian_blur_image(image):
|
||||||
|
return cv2.GaussianBlur(image, GAUSSIAN_BLUR_KERNEL_SIZE, GAUSSIAN_BLUR_SIGMA_X)
|
||||||
|
|
||||||
|
|
||||||
|
# 得到边缘检测之后的图
|
||||||
|
def get_canny_image(image):
|
||||||
|
return cv2.Canny(image, CANNY_THRESHOLD1, CANNY_THRESHOLD2)
|
||||||
|
|
||||||
|
|
||||||
|
# 得到轮廓信息,会保留比较明显的边缘信息
|
||||||
|
def get_contours(image):
|
||||||
|
contours, _ = cv2.findContours(image, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
return contours
|
||||||
|
|
||||||
|
|
||||||
|
# 得到轮廓的上下限:
|
||||||
|
# 外接矩形的高度和宽度是通过实际测量得出来的,高约0.25,宽约0.15
|
||||||
|
# 缺口有一个最大偏移量和最小偏移量,最小偏移量是验证码宽度的0.2倍,最大是0.85倍
|
||||||
|
|
||||||
|
#面积阈值
|
||||||
|
def get_contour_area_threshold(image_width, image_height):
|
||||||
|
contour_area_min = (image_width * 0.15) * (image_height * 0.25) * 0.8
|
||||||
|
contour_area_max = (image_width * 0.15) * (image_height * 0.25) * 1.2
|
||||||
|
return contour_area_min, contour_area_max
|
||||||
|
|
||||||
|
# 周长阈值
|
||||||
|
def get_arc_length_threshold(image_width, image_height):
|
||||||
|
arc_length_min = ((image_width * 0.15) + (image_height * 0.25)) * 2 * 0.8
|
||||||
|
arc_length_max = ((image_width * 0.15) + (image_height * 0.25)) * 2 * 1.2
|
||||||
|
return arc_length_min, arc_length_max
|
||||||
|
|
||||||
|
# offset阈值
|
||||||
|
def get_offset_threshold(image_width):
|
||||||
|
offset_min = 0.2 * image_width
|
||||||
|
offset_max = 0.85 * image_width
|
||||||
|
return offset_min, offset_max
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# 长,宽,channel
|
||||||
|
image_raw = cv2.imread('captcha.png')
|
||||||
|
image_height, image_width, _ = image_raw.shape
|
||||||
|
image_gaussian_blur = get_gaussian_blur_image(image_raw)
|
||||||
|
# 长,宽 黑白的没有channel
|
||||||
|
image_canny = get_canny_image(image_gaussian_blur)
|
||||||
|
contours = get_contours(image_canny)
|
||||||
|
cv2.imwrite('image_canny.png', image_canny)
|
||||||
|
cv2.imwrite('image_gaussian_blur.png', image_gaussian_blur)
|
||||||
|
contour_area_min, contour_area_max = get_contour_area_threshold(image_width, image_height)
|
||||||
|
arc_length_min, arc_length_max = get_arc_length_threshold(image_width, image_height)
|
||||||
|
offset_min, offset_max = get_offset_threshold(image_width)
|
||||||
|
offset = None
|
||||||
|
for contour in contours:
|
||||||
|
# 计算外接矩形的x,y起始点位置;w,h宽和高
|
||||||
|
x, y, w, h = cv2.boundingRect(contour)
|
||||||
|
if contour_area_min < cv2.contourArea(contour) < contour_area_max and \
|
||||||
|
arc_length_min < cv2.arcLength(contour, True) < arc_length_max and \
|
||||||
|
offset_min < x < offset_max:
|
||||||
|
cv2.rectangle(image_raw, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
||||||
|
offset = x
|
||||||
|
cv2.imwrite('image_label.png', image_raw)
|
||||||
|
print('offset', offset)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 16:49
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,53 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 16:49
|
||||||
|
@Usage :
|
||||||
|
@Desc : 基于超级鹰官网SDK改写的
|
||||||
|
'''
|
||||||
|
import requests
|
||||||
|
from hashlib import md5
|
||||||
|
|
||||||
|
|
||||||
|
class Chaojiying(object):
|
||||||
|
|
||||||
|
def __init__(self, username, password, soft_id):
|
||||||
|
self.username = username
|
||||||
|
self.password = md5(password.encode('utf-8')).hexdigest()
|
||||||
|
self.soft_id = soft_id
|
||||||
|
self.base_params = {
|
||||||
|
'user': self.username,
|
||||||
|
'pass2': self.password,
|
||||||
|
'softid': self.soft_id, # 软件ID,需要到超级鹰后台的"软件ID"中获取
|
||||||
|
}
|
||||||
|
self.headers = {
|
||||||
|
'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
|
||||||
|
}
|
||||||
|
|
||||||
|
# 上传验证码并获取识别结果
|
||||||
|
def post_pic(self, im, codetype):
|
||||||
|
"""
|
||||||
|
im: 图片字节
|
||||||
|
codetype: 题目类型 参考 http://www.chaojiying.com/price.html
|
||||||
|
"""
|
||||||
|
params = {
|
||||||
|
'codetype': codetype,
|
||||||
|
}
|
||||||
|
params.update(self.base_params)
|
||||||
|
files = {'userfile': ('ccc.jpg', im)}
|
||||||
|
r = requests.post('http://upload.chaojiying.net/Upload/Processing.php', data=params, files=files,
|
||||||
|
headers=self.headers)
|
||||||
|
return r.json()
|
||||||
|
|
||||||
|
# 用于上报识别错误,识别错误时不扣题分
|
||||||
|
def report_error(self, im_id):
|
||||||
|
"""
|
||||||
|
im_id:报错题目的图片ID
|
||||||
|
"""
|
||||||
|
params = {
|
||||||
|
'id': im_id,
|
||||||
|
}
|
||||||
|
params.update(self.base_params)
|
||||||
|
r = requests.post('http://upload.chaojiying.net/Upload/ReportError.php', data=params, headers=self.headers)
|
||||||
|
return r.json()
|
||||||
|
|
@ -0,0 +1,19 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 16:55
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
from chaojiying import Chaojiying
|
||||||
|
|
||||||
|
USERNAME = 'Germey'
|
||||||
|
PASSWORD = ''
|
||||||
|
SOFT_ID = '915502'
|
||||||
|
CAPTCHA_KIND = '1006'
|
||||||
|
FILE_NAME = 'captcha1.png'
|
||||||
|
client = Chaojiying(USERNAME, PASSWORD, SOFT_ID)
|
||||||
|
result = client.post_pic(open(FILE_NAME, 'rb').read(), CAPTCHA_KIND)
|
||||||
|
print(result)
|
||||||
|
|
@ -0,0 +1,26 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 16:57
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
from chaojiying import Chaojiying
|
||||||
|
|
||||||
|
# USERNAME = 'Germey'
|
||||||
|
# PASSWORD = ''
|
||||||
|
# SOFT_ID = '915502'
|
||||||
|
# CAPTCHA_KIND = '9004'
|
||||||
|
# FILE_NAME = 'captcha2.png'
|
||||||
|
# client = Chaojiying(USERNAME, PASSWORD, SOFT_ID)
|
||||||
|
# result = client.post_pic(open(FILE_NAME, 'rb').read(), CAPTCHA_KIND)
|
||||||
|
# print(result)
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
image = cv2.imread('captcha2.png')
|
||||||
|
image = cv2.circle(image, (108, 133), radius=10, color=(0, 0, 255), thickness=-1)
|
||||||
|
image = cv2.circle(image, (227, 143), radius=10, color=(0, 0, 255), thickness=-1)
|
||||||
|
cv2.imwrite('captcha2_label.png', image)
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 19:42
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,23 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 19:43
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
from flask import Flask, request, jsonify
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@app.route('/sms', methods=['POST'])
|
||||||
|
def receive():
|
||||||
|
sms_content = request.form.get('content')
|
||||||
|
print(sms_content)
|
||||||
|
return jsonify(status='success')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
app.run(debug=True)
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 12:49
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,58 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 12:53
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import os
|
||||||
|
from torch.utils.data import DataLoader, Dataset
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from PIL import Image
|
||||||
|
import encoding as ohe
|
||||||
|
import setting
|
||||||
|
|
||||||
|
|
||||||
|
class mydataset(Dataset):
|
||||||
|
|
||||||
|
def __init__(self, folder, transform=None):
|
||||||
|
self.train_image_file_paths = [os.path.join(folder, image_file) for image_file in os.listdir(folder)]
|
||||||
|
self.transform = transform
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.train_image_file_paths)
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
image_root = self.train_image_file_paths[idx]
|
||||||
|
image_name = image_root.split(os.path.sep)[-1]
|
||||||
|
image = Image.open(image_root)
|
||||||
|
if self.transform is not None:
|
||||||
|
image = self.transform(image)
|
||||||
|
label = ohe.encode(image_name.split('_')[0])
|
||||||
|
return image, label
|
||||||
|
|
||||||
|
|
||||||
|
transform = transforms.Compose([
|
||||||
|
# transforms.ColorJitter(),
|
||||||
|
transforms.Grayscale(),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
def get_train_data_loader():
|
||||||
|
dataset = mydataset(setting.TRAIN_DATASET_PATH, transform=transform)
|
||||||
|
return DataLoader(dataset, batch_size=64, shuffle=True)
|
||||||
|
|
||||||
|
|
||||||
|
def get_eval_data_loader():
|
||||||
|
dataset = mydataset(setting.EVAL_DATASET_PATH, transform=transform)
|
||||||
|
return DataLoader(dataset, batch_size=1, shuffle=True)
|
||||||
|
|
||||||
|
|
||||||
|
def get_predict_data_loader():
|
||||||
|
dataset = mydataset(setting.PREDICT_DATASET_PATH, transform=transform)
|
||||||
|
return DataLoader(dataset, batch_size=1, shuffle=True)
|
||||||
|
|
@ -0,0 +1,65 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 12:54
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import numpy as np
|
||||||
|
import setting
|
||||||
|
|
||||||
|
|
||||||
|
def encode(text):
|
||||||
|
vector = np.zeros(setting.ALL_CHAR_SET_LEN * setting.MAX_CAPTCHA, dtype=float)
|
||||||
|
|
||||||
|
def char2pos(c):
|
||||||
|
if c == '_':
|
||||||
|
k = 62
|
||||||
|
return k
|
||||||
|
# ord()用来返回单个字符的ascii值(0-255)获取unicode值
|
||||||
|
# chr()用来返回一个【0-255】数值对应的ascii符号
|
||||||
|
# 48,65,97分别是0,A,a的ascii值
|
||||||
|
# 等价于ord(c)-ord(0)
|
||||||
|
k = ord(c) - 48
|
||||||
|
if k > 9:
|
||||||
|
# >9说明不是字母,+10是因为0-9位数字
|
||||||
|
k = ord(c) - 65 + 10
|
||||||
|
if k > 35:
|
||||||
|
# +26是因为大写字母有26位
|
||||||
|
k = ord(c) - 97 + 26 + 10
|
||||||
|
if k > 61:
|
||||||
|
raise ValueError('error')
|
||||||
|
return k
|
||||||
|
|
||||||
|
for i, c in enumerate(text):
|
||||||
|
idx = i * setting.ALL_CHAR_SET_LEN + char2pos(c)
|
||||||
|
vector[idx] = 1.0
|
||||||
|
return vector
|
||||||
|
|
||||||
|
|
||||||
|
def decode(vec):
|
||||||
|
char_pos = vec.nonzero()[0]
|
||||||
|
text = []
|
||||||
|
for i, c in enumerate(char_pos):
|
||||||
|
char_at_pos = i # c/63
|
||||||
|
char_idx = c % setting.ALL_CHAR_SET_LEN
|
||||||
|
if char_idx < 10:
|
||||||
|
char_code = char_idx + ord('0')
|
||||||
|
elif char_idx < 36:
|
||||||
|
char_code = char_idx - 10 + ord('A')
|
||||||
|
elif char_idx < 62:
|
||||||
|
char_code = char_idx - 36 + ord('a')
|
||||||
|
elif char_idx == 62:
|
||||||
|
char_code = ord('_')
|
||||||
|
else:
|
||||||
|
raise ValueError('error')
|
||||||
|
text.append(chr(char_code))
|
||||||
|
return "".join(text)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
e = encode("BK7H")
|
||||||
|
print(decode(e))
|
||||||
|
|
@ -0,0 +1,57 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 13:41
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import setting
|
||||||
|
import dataset
|
||||||
|
from model import CNN
|
||||||
|
import encoding
|
||||||
|
|
||||||
|
|
||||||
|
def main(model_path):
|
||||||
|
cnn = CNN()
|
||||||
|
cnn.eval()
|
||||||
|
cnn.load_state_dict(torch.load(model_path))
|
||||||
|
print("load cnn net.")
|
||||||
|
|
||||||
|
eval_dataloader = dataset.get_eval_data_loader()
|
||||||
|
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
for i, (images, labels) in enumerate(eval_dataloader):
|
||||||
|
image = images
|
||||||
|
vimage = Variable(image)
|
||||||
|
predict_label = cnn(vimage)
|
||||||
|
|
||||||
|
c0 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, 0:setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
c1 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, setting.ALL_CHAR_SET_LEN:2 * setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
c2 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, 2 * setting.ALL_CHAR_SET_LEN:3 * setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
c3 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, 3 * setting.ALL_CHAR_SET_LEN:4 * setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
predict_label = '%s%s%s%s' % (c0, c1, c2, c3)
|
||||||
|
true_label = encoding.decode(labels.numpy()[0])
|
||||||
|
total += labels.size(0)
|
||||||
|
if (predict_label == true_label):
|
||||||
|
correct += 1
|
||||||
|
if (total % 200 == 0):
|
||||||
|
print('Test Accuracy of the model on the %d eval images: %f %%' %
|
||||||
|
(total, 100 * correct / total))
|
||||||
|
print('Test Accuracy of the model on the %d eval images: %f %%' %
|
||||||
|
(total, 100 * correct / total))
|
||||||
|
return correct / total
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
@ -0,0 +1,45 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 13:30
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
from captcha.image import ImageCaptcha # pip install captcha
|
||||||
|
from PIL import Image
|
||||||
|
import random
|
||||||
|
import time
|
||||||
|
import setting
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def generate_captcha_text():
|
||||||
|
captcha_text = []
|
||||||
|
for i in range(setting.MAX_CAPTCHA):
|
||||||
|
c = random.choice(setting.ALL_CHAR_SET)
|
||||||
|
captcha_text.append(c)
|
||||||
|
return ''.join(captcha_text)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_captcha_text_and_image():
|
||||||
|
image = ImageCaptcha()
|
||||||
|
captcha_text = generate_captcha_text()
|
||||||
|
captcha_image = Image.open(image.generate(captcha_text))
|
||||||
|
return captcha_text, captcha_image
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# 生成3000张验证集
|
||||||
|
count = 3000
|
||||||
|
path = setting.PREDICT_DATASET_PATH
|
||||||
|
if not os.path.exists(path):
|
||||||
|
os.makedirs(path)
|
||||||
|
for i in range(count):
|
||||||
|
now = str(int(time.time()))
|
||||||
|
text, image = generate_captcha_text_and_image()
|
||||||
|
filename = text + '_' + now + '.png'
|
||||||
|
image.save(path + os.path.sep + filename)
|
||||||
|
print('saved %d : %s' % (i + 1, filename))
|
||||||
|
|
@ -0,0 +1,55 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 13:36
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import torch.nn as nn
|
||||||
|
import setting
|
||||||
|
|
||||||
|
|
||||||
|
# CNN Model (2 conv layer)
|
||||||
|
class CNN(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(CNN, self).__init__()
|
||||||
|
self.layer1 = nn.Sequential(
|
||||||
|
nn.Conv2d(1, 32, kernel_size=3, padding=1),
|
||||||
|
nn.BatchNorm2d(32),
|
||||||
|
nn.Dropout(0.5), # drop 50% of the neuron
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool2d(2))
|
||||||
|
self.layer2 = nn.Sequential(
|
||||||
|
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.Dropout(0.5), # drop 50% of the neuron
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool2d(2))
|
||||||
|
self.layer3 = nn.Sequential(
|
||||||
|
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||||||
|
nn.BatchNorm2d(64),
|
||||||
|
nn.Dropout(0.5), # drop 50% of the neuron
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool2d(2))
|
||||||
|
self.fc = nn.Sequential(
|
||||||
|
# 除以8是因为MaxPool2d了3次
|
||||||
|
nn.Linear((setting.IMAGE_WIDTH // 8) * (setting.IMAGE_HEIGHT // 8) * 64, 1024),
|
||||||
|
nn.Dropout(0.5), # drop 50% of the neuron
|
||||||
|
nn.ReLU())
|
||||||
|
self.rfc = nn.Sequential(
|
||||||
|
# setting.MAX_CAPTCHA * setting.ALL_CHAR_SET_LEN是字典集的长度
|
||||||
|
nn.Linear(1024, setting.MAX_CAPTCHA * setting.ALL_CHAR_SET_LEN),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
out = self.layer1(x)
|
||||||
|
out = self.layer2(out)
|
||||||
|
out = self.layer3(out)
|
||||||
|
# flatten展平
|
||||||
|
out = out.view(out.size(0), -1)
|
||||||
|
out = self.fc(out)
|
||||||
|
out = self.rfc(out)
|
||||||
|
return out
|
||||||
|
|
@ -0,0 +1,53 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 15:03
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from torch.autograd import Variable
|
||||||
|
# from visdom import Visdom # pip install Visdom
|
||||||
|
import setting
|
||||||
|
import dataset
|
||||||
|
from model import CNN
|
||||||
|
import encoding as encode
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
cnn = CNN()
|
||||||
|
cnn.eval()
|
||||||
|
cnn.load_state_dict(torch.load('./output/best_model.pkl', map_location=torch.device('cpu')))
|
||||||
|
print("load cnn net.")
|
||||||
|
|
||||||
|
predict_dataloader = dataset.get_predict_data_loader()
|
||||||
|
|
||||||
|
# vis = Visdom()
|
||||||
|
correct = 0
|
||||||
|
for i, (images, labels) in enumerate(predict_dataloader):
|
||||||
|
image = images
|
||||||
|
vimage = Variable(image)
|
||||||
|
predict_label = cnn(vimage)
|
||||||
|
actual_label = encode.decode(labels[0].numpy())
|
||||||
|
|
||||||
|
c0 = setting.ALL_CHAR_SET[np.argmax(predict_label[0, 0:setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
c1 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, setting.ALL_CHAR_SET_LEN:2 * setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
c2 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, 2 * setting.ALL_CHAR_SET_LEN:3 * setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
c3 = setting.ALL_CHAR_SET[np.argmax(
|
||||||
|
predict_label[0, 3 * setting.ALL_CHAR_SET_LEN:4 * setting.ALL_CHAR_SET_LEN].data.numpy())]
|
||||||
|
correct += 1 if "".join([c0, c1, c2, c3]) == actual_label else 0
|
||||||
|
c = '%s%s%s%s' % (c0, c1, c2, c3)
|
||||||
|
print(f"predict:{c},actual:{actual_label}")
|
||||||
|
# vis.images(image, opts=dict(caption=c))
|
||||||
|
print(f"total:{len(predict_dataloader)},correct:{correct}")
|
||||||
|
# 经过测试,最终正确率约74%,total:3000,correct:2233
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
@ -0,0 +1,29 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 12:54
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import os
|
||||||
|
|
||||||
|
# 验证码中的字符
|
||||||
|
# string.digits + string.ascii_uppercase
|
||||||
|
NUMBER = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
||||||
|
ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
|
||||||
|
'V', 'W', 'X', 'Y', 'Z']
|
||||||
|
|
||||||
|
ALL_CHAR_SET = NUMBER + ALPHABET
|
||||||
|
ALL_CHAR_SET_LEN = len(ALL_CHAR_SET)
|
||||||
|
MAX_CAPTCHA = 4
|
||||||
|
|
||||||
|
# 图像大小
|
||||||
|
IMAGE_HEIGHT = 60
|
||||||
|
IMAGE_WIDTH = 160
|
||||||
|
|
||||||
|
TRAIN_DATASET_PATH = 'dataset' + os.path.sep + 'train'
|
||||||
|
EVAL_DATASET_PATH = 'dataset' + os.path.sep + 'eval'
|
||||||
|
PREDICT_DATASET_PATH = 'dataset' + os.path.sep + 'predict'
|
||||||
|
|
@ -0,0 +1,66 @@
|
||||||
|
# -*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 13:40
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
||||||
|
# -*- coding: UTF-8 -*-
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import dataset
|
||||||
|
from model import CNN
|
||||||
|
from evaluate import main as evaluate
|
||||||
|
import os
|
||||||
|
import os.path
|
||||||
|
|
||||||
|
num_epochs = 30
|
||||||
|
batch_size = 100
|
||||||
|
learning_rate = 0.001
|
||||||
|
|
||||||
|
output = './output'
|
||||||
|
os.path.exists(output) or os.makedirs(output)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
cnn = CNN()
|
||||||
|
cnn.train()
|
||||||
|
|
||||||
|
criterion = nn.MultiLabelSoftMarginLoss()
|
||||||
|
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
|
||||||
|
max_eval_acc = -1
|
||||||
|
|
||||||
|
train_dataloader = dataset.get_train_data_loader()
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
model_path = os.path.join(output, "model.pkl")
|
||||||
|
for i, (images, labels) in enumerate(train_dataloader):
|
||||||
|
# 在这里变成可以torch梯度autograd的变量
|
||||||
|
images = Variable(images)
|
||||||
|
labels = Variable(labels.float())
|
||||||
|
predict_labels = cnn(images)
|
||||||
|
loss = criterion(predict_labels, labels)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
if (i + 1) % 10 == 0:
|
||||||
|
print("epoch:", epoch, "step:", i, "loss:", loss.item())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
print("epoch:", epoch, "step:", i, "loss:", loss.item())
|
||||||
|
torch.save(cnn.state_dict(), model_path)
|
||||||
|
print("save model")
|
||||||
|
eval_acc = evaluate(model_path)
|
||||||
|
if eval_acc > max_eval_acc:
|
||||||
|
# best model save as best_model.pkl
|
||||||
|
torch.save(cnn.state_dict(), os.path.join(output, "best_model.pkl"))
|
||||||
|
print("save best model")
|
||||||
|
torch.save(cnn.state_dict(), os.path.join(output, "model.pkl"))
|
||||||
|
print("save last model")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
@ -0,0 +1,19 @@
|
||||||
|
#checkpoints/
|
||||||
|
.DS_Store
|
||||||
|
build
|
||||||
|
.git
|
||||||
|
*.egg-info
|
||||||
|
dist
|
||||||
|
output
|
||||||
|
data/coco
|
||||||
|
backup
|
||||||
|
weights/*.weights
|
||||||
|
weights/*
|
||||||
|
__pycache__
|
||||||
|
|
||||||
|
/.idea
|
||||||
|
|
||||||
|
/logs
|
||||||
|
data/captcha/images/*.xml
|
||||||
|
|
||||||
|
.vscode/
|
||||||
|
|
@ -0,0 +1,674 @@
|
||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
||||||
|
|
@ -0,0 +1,124 @@
|
||||||
|
# 滑动验证码深度学习识别
|
||||||
|
|
||||||
|
本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 [https://github.com/eriklindernoren/PyTorch-YOLOv3](https://github.com/eriklindernoren/PyTorch-YOLOv3) 修改。
|
||||||
|
|
||||||
|
只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例:
|
||||||
|
|
||||||
|

|
||||||
|
## 克隆项目
|
||||||
|
|
||||||
|
运行命令:
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone https://github.com/Python3WebSpider/DeepLearningSlideCaptcha2.git
|
||||||
|
```
|
||||||
|
|
||||||
|
## 数据准备
|
||||||
|
|
||||||
|
使用 LabelImg 工具标注自行标注一批数据,大约 200 张以上即可训练出不错的效果。
|
||||||
|
|
||||||
|
LabelImg:[https://github.com/tzutalin/labelImg](https://github.com/tzutalin/labelImg)
|
||||||
|
|
||||||
|
标注要求:
|
||||||
|
|
||||||
|
* 圈出验证码目标滑块区域的完整完整矩形,无需标注源滑块。
|
||||||
|
* 目标矩形命名为 target 这个类别。
|
||||||
|
* 建议使用 LabelImg 的快捷键提高标注效率。
|
||||||
|
|
||||||
|
## 环境准备
|
||||||
|
|
||||||
|
建议在 GPU 环境和虚拟 Python 环境下执行如下命令:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip3 install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
## 预训练模型下载
|
||||||
|
|
||||||
|
YOLOV3 的训练要加载预训练模型才能有不错的训练效果,预训练模型下载:
|
||||||
|
|
||||||
|
```
|
||||||
|
bash prepare.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
下载完成之后会在 weights 文件夹下出现模型权重文件,供训练使用。
|
||||||
|
|
||||||
|
## 训练
|
||||||
|
|
||||||
|
本项目已经提供了标注好的数据集,在 data/captcha,可以直接使用。
|
||||||
|
|
||||||
|
如果要训练自己的数据,数据格式准备见:[https://github.com/eriklindernoren/PyTorch-YOLOv3#train-on-custom-dataset](https://github.com/eriklindernoren/PyTorch-YOLOv3#train-on-custom-dataset)。
|
||||||
|
|
||||||
|
当前数据训练脚本:
|
||||||
|
|
||||||
|
```
|
||||||
|
bash train.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
实测 P100 训练时长约 15 秒一个 epoch,大约几分钟即可训练出较好效果。
|
||||||
|
|
||||||
|
## 测试
|
||||||
|
|
||||||
|
训练完毕之后会在 checkpoints 文件夹生成 pth 文件,可直接使用模型来预测生成标注结果。
|
||||||
|
|
||||||
|
此时 checkpoints 文件夹会生成训练好的 pth 文件。
|
||||||
|
|
||||||
|
当前数据测试脚本:
|
||||||
|
|
||||||
|
```
|
||||||
|
sh detect.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
该脚本会读取 captcha 下的 test 文件夹所有图片,并将处理后的结果输出到 test 文件夹。
|
||||||
|
|
||||||
|
运行结果样例:
|
||||||
|
|
||||||
|
```
|
||||||
|
Performing object detection:
|
||||||
|
+ Batch 0, Inference Time: 0:00:00.044223
|
||||||
|
+ Batch 1, Inference Time: 0:00:00.028566
|
||||||
|
+ Batch 2, Inference Time: 0:00:00.029764
|
||||||
|
+ Batch 3, Inference Time: 0:00:00.032430
|
||||||
|
+ Batch 4, Inference Time: 0:00:00.033373
|
||||||
|
+ Batch 5, Inference Time: 0:00:00.027861
|
||||||
|
+ Batch 6, Inference Time: 0:00:00.031444
|
||||||
|
+ Batch 7, Inference Time: 0:00:00.032110
|
||||||
|
+ Batch 8, Inference Time: 0:00:00.029131
|
||||||
|
|
||||||
|
Saving images:
|
||||||
|
(0) Image: 'data/captcha/test/captcha_4497.png'
|
||||||
|
+ Label: target, Conf: 0.99999
|
||||||
|
(1) Image: 'data/captcha/test/captcha_4498.png'
|
||||||
|
+ Label: target, Conf: 0.99999
|
||||||
|
(2) Image: 'data/captcha/test/captcha_4499.png'
|
||||||
|
+ Label: target, Conf: 0.99997
|
||||||
|
(3) Image: 'data/captcha/test/captcha_4500.png'
|
||||||
|
+ Label: target, Conf: 0.99999
|
||||||
|
(4) Image: 'data/captcha/test/captcha_4501.png'
|
||||||
|
+ Label: target, Conf: 0.99997
|
||||||
|
(5) Image: 'data/captcha/test/captcha_4502.png'
|
||||||
|
+ Label: target, Conf: 0.99999
|
||||||
|
(6) Image: 'data/captcha/test/captcha_4503.png'
|
||||||
|
+ Label: target, Conf: 0.99997
|
||||||
|
(7) Image: 'data/captcha/test/captcha_4504.png'
|
||||||
|
+ Label: target, Conf: 0.99998
|
||||||
|
(8) Image: 'data/captcha/test/captcha_4505.png'
|
||||||
|
+ Label: target, Conf: 0.99998
|
||||||
|
```
|
||||||
|
|
||||||
|
样例结果:
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
## 协议
|
||||||
|
|
||||||
|
本项目基于开源 [GNU 协议](https://github.com/eriklindernoren/PyTorch-YOLOv3/blob/master/LICENSE)
|
||||||
|
,另外本项目不提供任何有关滑动轨迹相关模拟和 JavaScript 逆向分析方案。
|
||||||
|
|
||||||
|
本项目仅供学习交流使用,请勿用于非法用途,本人不承担任何法律责任。
|
||||||
|
|
||||||
|
如有侵权请联系个人删除,谢谢。
|
||||||
|
|
@ -0,0 +1,8 @@
|
||||||
|
#-*- encoding:utf-8 -*-
|
||||||
|
|
||||||
|
'''
|
||||||
|
@Author : dingjiawen
|
||||||
|
@Date : 2023/12/12 15:31
|
||||||
|
@Usage :
|
||||||
|
@Desc :
|
||||||
|
'''
|
||||||
|
|
@ -0,0 +1,2 @@
|
||||||
|
*
|
||||||
|
!.gitignore
|
||||||
|
|
@ -0,0 +1,26 @@
|
||||||
|
from selenium import webdriver
|
||||||
|
from selenium.webdriver.common.by import By
|
||||||
|
from selenium.webdriver.support.ui import WebDriverWait
|
||||||
|
from selenium.webdriver.support import expected_conditions as EC
|
||||||
|
from selenium.common.exceptions import WebDriverException
|
||||||
|
import time
|
||||||
|
import logging as logger
|
||||||
|
|
||||||
|
COUNT = 1000
|
||||||
|
|
||||||
|
for i in range(0, COUNT + 1):
|
||||||
|
try:
|
||||||
|
browser = webdriver.Chrome()
|
||||||
|
wait = WebDriverWait(browser, 10)
|
||||||
|
browser.get('https://captcha1.scrape.center/')
|
||||||
|
button = wait.until(EC.element_to_be_clickable(
|
||||||
|
(By.CSS_SELECTOR, '.el-button')))
|
||||||
|
button.click()
|
||||||
|
captcha = wait.until(
|
||||||
|
EC.presence_of_element_located((By.CSS_SELECTOR, '.geetest_slicebg.geetest_absolute')))
|
||||||
|
time.sleep(5)
|
||||||
|
captcha.screenshot(f'data/captcha/images/captcha_{i}.png')
|
||||||
|
except WebDriverException as e:
|
||||||
|
logger.error(f'webdriver error occurred {e.msg}')
|
||||||
|
finally:
|
||||||
|
browser.close()
|
||||||
|
|
@ -0,0 +1,4 @@
|
||||||
|
classes= 1
|
||||||
|
train=data/captcha/train.txt
|
||||||
|
valid=data/captcha/valid.txt
|
||||||
|
names=data/captcha/classes.names
|
||||||
|
|
@ -0,0 +1,790 @@
|
||||||
|
|
||||||
|
[net]
|
||||||
|
# Testing
|
||||||
|
#batch=1
|
||||||
|
#subdivisions=1
|
||||||
|
# Training
|
||||||
|
batch=16
|
||||||
|
subdivisions=1
|
||||||
|
width=416
|
||||||
|
height=416
|
||||||
|
channels=3
|
||||||
|
momentum=0.9
|
||||||
|
decay=0.0005
|
||||||
|
angle=0
|
||||||
|
saturation = 1.5
|
||||||
|
exposure = 1.5
|
||||||
|
hue=.1
|
||||||
|
|
||||||
|
learning_rate=0.001
|
||||||
|
burn_in=1000
|
||||||
|
max_batches = 500200
|
||||||
|
policy=steps
|
||||||
|
steps=400000,450000
|
||||||
|
scales=.1,.1
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=32
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
# Downsample
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=64
|
||||||
|
size=3
|
||||||
|
stride=2
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=32
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=64
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
# Downsample
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=2
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=64
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=64
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
# Downsample
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=2
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
# Downsample
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=2
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
# Downsample
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=1024
|
||||||
|
size=3
|
||||||
|
stride=2
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=1024
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=1024
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=1024
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=1024
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
from=-3
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
######################
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=1024
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=1024
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=1024
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=18
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 6,7,8
|
||||||
|
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||||
|
classes=1
|
||||||
|
num=9
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
||||||
|
|
||||||
|
|
||||||
|
[route]
|
||||||
|
layers = -4
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[upsample]
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[route]
|
||||||
|
layers = -1, 61
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=512
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=512
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=512
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=18
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 3,4,5
|
||||||
|
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||||
|
classes=1
|
||||||
|
num=9
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[route]
|
||||||
|
layers = -4
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[upsample]
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[route]
|
||||||
|
layers = -1, 36
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=256
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=256
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=256
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=18
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 0,1,2
|
||||||
|
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
||||||
|
classes=1
|
||||||
|
num=9
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
||||||
|
|
||||||
|
|
@ -0,0 +1 @@
|
||||||
|
target
|
||||||
|
After Width: | Height: | Size: 236 KiB |
|
After Width: | Height: | Size: 279 KiB |
|
After Width: | Height: | Size: 206 KiB |
|
After Width: | Height: | Size: 150 KiB |
|
After Width: | Height: | Size: 371 KiB |
|
After Width: | Height: | Size: 161 KiB |
|
After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 175 KiB |
|
After Width: | Height: | Size: 255 KiB |
|
After Width: | Height: | Size: 242 KiB |
|
After Width: | Height: | Size: 200 KiB |
|
After Width: | Height: | Size: 369 KiB |
|
After Width: | Height: | Size: 369 KiB |
|
After Width: | Height: | Size: 256 KiB |
|
After Width: | Height: | Size: 282 KiB |
|
After Width: | Height: | Size: 473 KiB |
|
After Width: | Height: | Size: 209 KiB |
|
After Width: | Height: | Size: 147 KiB |
|
After Width: | Height: | Size: 241 KiB |
|
After Width: | Height: | Size: 473 KiB |
|
After Width: | Height: | Size: 152 KiB |
|
After Width: | Height: | Size: 224 KiB |
|
After Width: | Height: | Size: 198 KiB |
|
After Width: | Height: | Size: 208 KiB |
|
After Width: | Height: | Size: 192 KiB |
|
After Width: | Height: | Size: 371 KiB |
|
After Width: | Height: | Size: 243 KiB |
|
After Width: | Height: | Size: 148 KiB |
|
After Width: | Height: | Size: 243 KiB |
|
After Width: | Height: | Size: 207 KiB |
|
After Width: | Height: | Size: 278 KiB |
|
After Width: | Height: | Size: 235 KiB |
|
After Width: | Height: | Size: 181 KiB |
|
After Width: | Height: | Size: 210 KiB |
|
After Width: | Height: | Size: 238 KiB |
|
After Width: | Height: | Size: 209 KiB |
|
After Width: | Height: | Size: 208 KiB |
|
After Width: | Height: | Size: 272 KiB |
|
After Width: | Height: | Size: 200 KiB |
|
After Width: | Height: | Size: 173 KiB |
|
After Width: | Height: | Size: 369 KiB |
|
After Width: | Height: | Size: 152 KiB |
|
After Width: | Height: | Size: 207 KiB |
|
After Width: | Height: | Size: 371 KiB |
|
After Width: | Height: | Size: 150 KiB |
|
After Width: | Height: | Size: 181 KiB |
|
After Width: | Height: | Size: 151 KiB |
|
After Width: | Height: | Size: 282 KiB |
|
After Width: | Height: | Size: 173 KiB |
|
After Width: | Height: | Size: 283 KiB |
|
After Width: | Height: | Size: 73 KiB |
|
After Width: | Height: | Size: 207 KiB |
|
After Width: | Height: | Size: 152 KiB |
|
After Width: | Height: | Size: 271 KiB |