leecode更新

This commit is contained in:
markilue 2022-10-19 11:34:54 +08:00
parent c881127f48
commit b03cc42571
5 changed files with 1034 additions and 48 deletions

View File

@ -0,0 +1,213 @@
package com.markilue.leecode.backtrace;
import org.junit.Test;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
/**
* @BelongsProject: Leecode
* @BelongsPackage: com.markilue.leecode.backtrace
* @Author: markilue
* @CreateTime: 2022-10-19 10:06
* @Description: TODO 力扣491题 递增子序列
* 给你一个整数数组 nums 找出并返回所有该数组中不同的递增子序列递增子序列中 至少有两个元素 你可以按 任意顺序 返回答案
* 数组中可能含有重复元素如出现两个整数相等也可以视作递增序列的一种特殊情况
* @Version: 1.0
*/
public class FindSubsequences {
@Test
public void test() {
int[] nums = {4,6,7,7};
System.out.println(findSubsequences(nums));
}
@Test
public void test1() {
int[] nums = {4,4,3,2,1};
System.out.println(findSubsequences(nums));
}
@Test
public void test2() {
int[] nums = {1,2,3,4,5,6,7,8,9,10,1,1,1,1,1};
System.out.println(findSubsequences(nums));
System.out.println(result.size());
}
List<List<Integer>> result = new ArrayList<>();
List<Integer> cur = new ArrayList<>();
/**
* 递增子序列只是在子序列不重复的前提下增加了递增条件
*
* @param nums
* @return
*/
public List<List<Integer>> findSubsequences(int[] nums) {
boolean[] used = new boolean[nums.length];
backtracking(nums, 0, used);
// backtracking1(nums, 0);
return result;
}
//解答错误但是没有发现具体是哪里发生了错误答案好像也是对的;test2的后面的1111都不能加入答案
public void backtracking(int[] nums, int start, boolean[] used) {
if (start >= nums.length) {
return;
}
for (int i = start; i < nums.length; i++) {
if(i>start&&nums[i]<nums[i-1]){
return;
}
//同一树层不能使用相同的数字TODO 这里的nums[i] == nums[i - 1]不行了因为数组不能先排序两个相同的数字不一定是连续的
if (i > start && nums[i] == nums[i - 1] && used[i - 1] == true) {
continue;
}
//要求单调递增才加入
if (cur.isEmpty() || cur.get(cur.size() - 1) <= nums[i]) {
cur.add(nums[i]);
used[i] = false;
} else {
continue;
}
if (cur.size() >= 2) {
result.add(new ArrayList<>(cur));
}
backtracking(nums, i+1, used);
//回溯
cur.remove(cur.size() - 1);
used[i] = true;
}
}
//代码随想录回溯:速度击败88.08%内存击败98.92%
public void backtracking1(int[] nums, int start) {
if (cur.size()>1) {
result.add(new ArrayList<>(cur));
//注意这个不return要取树上的节点
}
//记录同层数字是否用过
HashSet<Integer> set = new HashSet<>();
for (int i = start; i < nums.length; i++) {
//同一树层不能使用相同的数字
//要求单调递增才加入
if ((!cur.isEmpty() && cur.get(cur.size() - 1) > nums[i])||set.contains(nums[i])) {
continue;
}
set.add(nums[i]);
cur.add(nums[i]);
backtracking1(nums, i+1);
//回溯
cur.remove(cur.size() - 1);
}
}
//代码随想录回溯之Hash优化:由于题设数值范围为[-100,100]完全可以使用数组来进行Hash优化
// 速度击败61.89%内存击败28.23%
public void backtracking2(int[] nums, int start) {
if (cur.size()>1) {
result.add(new ArrayList<>(cur));
//注意这个不return要取树上的节点
}
//记录同层数字是否用过
int[] used = new int[201];
for (int i = start; i < nums.length; i++) {
//同一树层不能使用相同的数字
//要求单调递增才加入
if ((!cur.isEmpty() && cur.get(cur.size() - 1) > nums[i])||used[nums[i]+100]==1) {
continue;
}
used[nums[i]+100]=1;//记录树层使用过本层不能继续使用
cur.add(nums[i]);
backtracking2(nums, i+1);
//回溯
cur.remove(cur.size() - 1);
}
}
/**
* 官方的 二进制枚举+哈希法
*/
List<Integer> temp = new ArrayList<Integer>();
List<List<Integer>> ans = new ArrayList<List<Integer>>();
Set<Integer> set = new HashSet<Integer>();
int n;
public List<List<Integer>> findSubsequences2(int[] nums) {
n = nums.length;
for (int i = 0; i < (1 << n); ++i) {
findSubsequences(i, nums);
int hashValue = getHash(263, (int) 1E9 + 7);
//使用监测hash值取去重set中添加hash值
if (check() && !set.contains(hashValue)) {
ans.add(new ArrayList<Integer>(temp));
set.add(hashValue);
}
}
return ans;
}
public void findSubsequences(int mask, int[] nums) {
temp.clear();
for (int i = 0; i < n; ++i) {
if ((mask & 1) != 0) {
temp.add(nums[i]);
}
mask >>= 1;
}
}
public int getHash(int base, int mod) {
int hashValue = 0;
for (int x : temp) {
hashValue = hashValue * base % mod + (x + 101);
hashValue %= mod;
}
return hashValue;
}
public boolean check() {
for (int i = 1; i < temp.size(); ++i) {
if (temp.get(i) < temp.get(i - 1)) {
return false;
}
}
return temp.size() >= 2;
}
}

View File

@ -0,0 +1,98 @@
package com.markilue.leecode.backtrace;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
/**
* @BelongsProject: Leecode
* @BelongsPackage: com.markilue.leecode.backtrace
* @Author: markilue
* @CreateTime: 2022-10-19 11:16
* @Description:
* TODO leecode 46题 全排列
* 给定一个不含重复数字的数组 nums 返回其 所有可能的全排列 你可以 按任意顺序 返回答案
* @Version: 1.0
*/
public class Permute {
@Test
public void test(){
int[] nums = {1,2,3};
System.out.println(permute(nums));
}
@Test
public void test1(){
int[] nums = {0,1};
System.out.println(permute(nums));
}
@Test
public void test2(){
int[] nums = {0};
System.out.println(permute(nums));
}
/**
* 自己思路全排列数组即数组中不包含该元素即可
* 速度击败81.77%内存击败22.57%
* @param nums
* @return
*/
public List<List<Integer>> permute(int[] nums) {
// backtracking(nums);
backtracking1(nums,new boolean[nums.length]);
return result;
}
List<List<Integer>> result = new ArrayList<>();
List<Integer> cur = new ArrayList<>();
public void backtracking(int[] nums){
if(cur.size()==nums.length){
result.add(new ArrayList<>(cur));
return;
}
for (int i = 0; i < nums.length; i++) {
if(cur.contains(nums[i])){
continue;
}
cur.add(nums[i]);
backtracking(nums);
cur.remove(cur.size()-1);
}
}
//代码随想录使用used数组记录是否用过
//速度击败100%内存击败38.03%
public void backtracking1(int[] nums,boolean[] used){
if(cur.size()==nums.length){
result.add(new ArrayList<>(cur));
return;
}
for (int i = 0; i < nums.length; i++) {
if(used[i]==true){
continue;
}
used[i]=true;
cur.add(nums[i]);
backtracking1(nums,used);
cur.remove(cur.size()-1);
used[i]=false;
}
}
}

View File

@ -472,19 +472,30 @@ def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False
total_result.append(output4) total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1]) total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ]) total_result = np.reshape(total_result, [-1, ])
#误报率,漏报率,准确性的计算
if isSave: if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',') np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot: if isPlot:
plt.figure(1, figsize=(6.0, 2.68))
plt.subplots_adjust(left=0.1, right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout() plt.tight_layout()
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10) plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线 # 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold') plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线 # 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red', # plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5) # alpha=0.9, overhang=0.5)
# plt.text(35000, 0.9, "Truth Fault", fontsize=10, color='black', verticalalignment='top') plt.text(test_data.shape[0] * 2 / 3+1000, 0.7, "Truth Fault", fontsize=10, color='red', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.') plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xticks(range(6),('06/09/17','12/09/17','18/09/17','24/09/17','29/09/17')) # 设置x轴的标尺
plt.tick_params() #设置轴显示
plt.xlabel("time",fontdict=font1) plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1) plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top', plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',

View File

@ -7,4 +7,668 @@
@Date : 2022/10/11 19:00 @Date : 2022/10/11 19:00
@Usage : @Usage :
@Desc : 使用MSE作为损失函数的RNet @Desc : 使用MSE作为损失函数的RNet
''' '''
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_MSE import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_MSE"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}_weight/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_timestamp{1}_feature{2}_weight/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_MSE/{0}_timestamp{1}_feature{2}_mse.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_MSE/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
# save_name = "../model/joint/{0}_timestamp{1}_feature{2}.h5".format(model_name,
# time_stamp,
# feature_num,
# batch_size,
# EPOCH)
# save_step_two_name = "../model/joint_two/{0}_timestamp{1}_feature{2}.h5".format(model_name,
# time_stamp,
# feature_num,
# batch_size,
# EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False, pred_3=output1, pred_4=output2,
pred_5=output3)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
if isPlot:
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
# plt.text(35000, 0.9, "Truth Fault", fontsize=10, color='black', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xlabel("time")
plt.ylabel("confience")
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10})
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10})
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:256, :, :], train_label1=train_label1_healthy[:256, :],
# train_label2=train_label2_healthy[:256, ])
#### 模型训练
train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
step_one_model = Joint_Monitoring()
step_one_model.load_weights(save_name)
#
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
# #### TODO 计算MSE
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
getResult(step_one_model, healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :],
healthy_label=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
unhealthy_data=train_data_unhealthy, unhealthy_label=train_label1_unhealthy, isSave=True)
###TODO 展示全部的结果
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
# showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -72,40 +72,40 @@ class Joint_Monitoring(keras.Model):
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1) RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1) conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1) conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1) # conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1) upsample1 = self.upsample1(conv1)
# DACU2 = self.DACU2(upsample1) # DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(upsample1) # DACU2 = tf.keras.layers.BatchNormalization()(upsample1)
RepDCBlock2 = self.RepDCBlock2(DACU2) RepDCBlock2 = self.RepDCBlock2(upsample1)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2) # RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2) conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2) conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2) # conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2) upsample2 = self.upsample2(conv2)
# DACU3 = self.DACU3(upsample2) # DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(upsample2) # DACU3 = tf.keras.layers.BatchNormalization()(upsample2)
RepDCBlock3 = self.RepDCBlock3(DACU3) RepDCBlock3 = self.RepDCBlock3(upsample2)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3) # RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3) conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3) conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3) # conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1) concat1 = tf.concat([conv2, conv3], axis=1)
# DACU4 = self.DACU4(concat1) # DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(concat1) # DACU4 = tf.keras.layers.BatchNormalization()(concat1)
RepDCBlock4 = self.RepDCBlock4(DACU4) RepDCBlock4 = self.RepDCBlock4(concat1)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4) # RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4) conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4) conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4) # conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1) concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2) RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5) # RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = [] output1 = []
output2 = [] output2 = []
@ -117,25 +117,25 @@ class Joint_Monitoring(keras.Model):
# 重现原数据 # 重现原数据
# 接block3 # 接block3
GRU1 = self.GRU1(RepDCBlock3) GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1) # GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1) d1 = self.d1(GRU1)
# tf.nn.softmax # tf.nn.softmax
output1 = self.output1(d1) output1 = self.output1(d1)
# 接block4 # 接block4
GRU2 = self.GRU2(RepDCBlock4) GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2) # GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2) d2 = self.d2(GRU2)
# tf.nn.softmax # tf.nn.softmax
output2 = self.output2(d2) output2 = self.output2(d2)
# 接block5 # 接block5
GRU3 = self.GRU3(RepDCBlock5) GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3) # GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3) d3 = self.d3(GRU3)
# tf.nn.softmax # tf.nn.softmax
output3 = self.output3(d3) output3 = self.output3(d3)
else: else:
GRU1 = self.GRU1(RepDCBlock3) GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1) # GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1) d1 = self.d1(GRU1)
# tf.nn.softmax # tf.nn.softmax
output1 = self.output1(d1) output1 = self.output1(d1)
@ -147,7 +147,7 @@ class Joint_Monitoring(keras.Model):
output2 = self.output2(d2) output2 = self.output2(d2)
# 接block5 # 接block5
GRU3 = self.GRU3(RepDCBlock5) GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3) # GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3) d3 = self.d3(GRU3)
# tf.nn.softmax # tf.nn.softmax
output3 = self.output3(d3) output3 = self.output3(d3)
@ -175,73 +175,73 @@ class Joint_Monitoring(keras.Model):
pred_5=None): pred_5=None):
# step one # step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor) RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1) # RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1) conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1) conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1) # conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1) upsample1 = self.upsample1(conv1)
# DACU2 = self.DACU2(upsample1) # DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(upsample1) # DACU2 = tf.keras.layers.BatchNormalization()(upsample1)
RepDCBlock2 = self.RepDCBlock2(DACU2) RepDCBlock2 = self.RepDCBlock2(upsample1)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2) # RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2) conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2) conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2) # conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2) upsample2 = self.upsample2(conv2)
# DACU3 = self.DACU3(upsample2) # DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(upsample2) # DACU3 = tf.keras.layers.BatchNormalization()(upsample2)
RepDCBlock3 = self.RepDCBlock3(DACU3) RepDCBlock3 = self.RepDCBlock3(upsample2)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3) # RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3) conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3) conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3) # conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1) concat1 = tf.concat([conv2, conv3], axis=1)
# DACU4 = self.DACU4(concat1) # DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(concat1) # DACU4 = tf.keras.layers.BatchNormalization()(concat1)
RepDCBlock4 = self.RepDCBlock4(DACU4) RepDCBlock4 = self.RepDCBlock4(concat1)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4) # RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4) conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4) conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4) # conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1) concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2) RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5) # RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time: if is_first_time:
# step two # step two
# 重现原数据 # 重现原数据
# 接block3 # 接block3
GRU1 = self.GRU1(RepDCBlock3) GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1) # GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1) d1 = self.d1(GRU1)
# tf.nn.softmax # tf.nn.softmax
output1 = self.output1(d1) output1 = self.output1(d1)
# 接block4 # 接block4
GRU2 = self.GRU2(RepDCBlock4) GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2) # GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2) d2 = self.d2(GRU2)
# tf.nn.softmax # tf.nn.softmax
output2 = self.output2(d2) output2 = self.output2(d2)
# 接block5 # 接block5
GRU3 = self.GRU3(RepDCBlock5) GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3) # GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3) d3 = self.d3(GRU3)
# tf.nn.softmax # tf.nn.softmax
output3 = self.output3(d3) output3 = self.output3(d3)
# reduce_mean降维计算均值 # reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1) # MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2) # MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3) # MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1)) MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2)) MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3)) MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy()) print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy()) print("MSE_loss2:", MSE_loss2.numpy())
@ -254,19 +254,19 @@ class Joint_Monitoring(keras.Model):
# 重现原数据 # 重现原数据
# 接block3 # 接block3
GRU1 = self.GRU1(RepDCBlock3) GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1) # GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1) d1 = self.d1(GRU1)
# tf.nn.softmax # tf.nn.softmax
output1 = self.output1(d1) output1 = self.output1(d1)
# 接block4 # 接block4
GRU2 = self.GRU2(RepDCBlock4) GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2) # GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2) d2 = self.d2(GRU2)
# tf.nn.softmax # tf.nn.softmax
output2 = self.output2(d2) output2 = self.output2(d2)
# 接block5 # 接block5
GRU3 = self.GRU3(RepDCBlock5) GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3) # GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3) d3 = self.d3(GRU3)
# tf.nn.softmax # tf.nn.softmax
output3 = self.output3(d3) output3 = self.output3(d3)