leecode更新

This commit is contained in:
markilue 2022-10-18 14:02:48 +08:00
parent 60a7641c65
commit c881127f48
8 changed files with 1921 additions and 4 deletions

View File

@ -0,0 +1,103 @@
package com.markilue.leecode.backtrace;
import org.junit.Test;
import java.util.ArrayList;
import java.util.List;
/**
* @BelongsProject: Leecode
* @BelongsPackage: com.markilue.leecode.backtrace
* @Author: markilue
* @CreateTime: 2022-10-18 09:33
* @Description:
* TODO 力扣78题 子集
* 给你一个整数数组 nums 数组中的元素 互不相同 返回该数组所有可能的子集幂集
* 解集 不能 包含重复的子集你可以按 任意顺序 返回解集
* @Version: 1.0
*/
public class Subsets {
@Test
public void test(){
int[] nums = {1,2,3};
System.out.println(subsets1(nums));
}
@Test
public void test1(){
int[] nums = {4,9,2};
System.out.println(subsets(nums));
}
/**
* 子集思路所有数组中的数都可以分为有他和没有他
* 速度击败100%内存击败83.67%
* @param nums
* @return
*/
public List<List<Integer>> subsets(int[] nums) {
result.add(new ArrayList<>(cur));
backtracking(nums,0);
return result;
}
List<List<Integer>> result =new ArrayList<>();
List<Integer> cur =new ArrayList<>();
public void backtracking(int[] nums, int i) {
if(i>=nums.length){
return;
}
for (int j = 0; j < 2; j++) {
//在界限内的话每次都加上
if(j==0){
cur.add(nums[i]);
//这里只在0时加因为后面会删自动就是没有他的情况
result.add(new ArrayList<Integer>(cur));
}
backtracking(nums,i+1);
if(j==0){
cur.remove(cur.size()-1);
}
}
}
/**
* 官方思路一依次遍历
* 速度击败100%内存击败93.56%
* @param nums
* @return
*/
public List<List<Integer>> subsets1(int[] nums) {
// result.add(new ArrayList<>(cur));
backtracking1(nums,0);
return result;
}
public void backtracking1(int[] nums, int i) {
result.add(new ArrayList<>(cur));
if(i>=nums.length){
return;
}
for (int j = i; j < nums.length; j++) {
cur.add(nums[j]);
backtracking1(nums,j+1);
cur.remove(cur.size()-1);
}
}
}

View File

@ -0,0 +1,175 @@
package com.markilue.leecode.backtrace;
import com.markilue.leecode.stackAndDeque.EvalRPN;
import org.junit.Test;
import javax.print.DocFlavor;
import java.util.*;
/**
* @BelongsProject: Leecode
* @BelongsPackage: com.markilue.leecode.backtrace
* @Author: markilue
* @CreateTime: 2022-10-18 10:28
* @Description: TODO 力扣90题 子集II:
* 给你一个整数数组 nums 其中可能包含重复元素请你返回该数组所有可能的子集幂集
* 解集 不能 包含重复的子集返回的解集中子集可以按 任意顺序 排列
* @Version: 1.0
*/
public class SubsetsWithDup {
@Test
public void test() {
int[] nums = {1, 2, 2};
System.out.println(subsetsWithDup(nums));
}
@Test
public void test1() {
int[] nums = {1, 3, 3, 5};
System.out.println(subsetsWithDup1(nums));
}
List<List<Integer>> result = new ArrayList<>();
List<Integer> cur = new ArrayList<>();
/**
* 自己思路1 数组中包含重复元素为了避免添加重复子集类似于组合II中使用used数组记录是否同一树层该数被使用过
* 速度击败99.83%内存击败25.91%
* @param nums
* @return
*/
public List<List<Integer>> subsetsWithDup(int[] nums) {
result.add(new ArrayList<>(cur));
Arrays.sort(nums);
boolean[] used = new boolean[nums.length];
backtracking(nums, 0, used);
return result;
}
public void backtracking(int[] nums, int start, boolean[] used) {
if (start >= nums.length) {
return;
}
for (int i = start; i < nums.length; i++) {
//不同树层则直接跳过
if (i >= 1 && nums[i] == nums[i - 1] && used[i - 1] == true) {
used[start] = true;
continue;
}else {
cur.add(nums[i]);
result.add(new ArrayList<>(cur));
//不同树层之间可以使用相同的数字
used[i] = false;
}
backtracking(nums, i + 1, used);
cur.remove(cur.size() - 1);
//相同树层之间不能使用相同的数字
used[i] = true;
}
}
//<数字使用次数>
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
int last;
/**
* 自己思路2数组中包含重复元素为了避免添加重复子集提前记录数字的个数采用该数字使用过几次的方式进行遍历
* 速度击败99.83%内存击败54.06%
*
* @param nums
* @return
*/
public List<List<Integer>> subsetsWithDup1(int[] nums) {
result.add(new ArrayList<>(cur));
Arrays.sort(nums);
//存放<数字次数>
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
last = Integer.MAX_VALUE;
backtracking1(nums, 0);
return result;
}
public void backtracking1(int[] nums, int start) {
if (start >= nums.length) {
return;
}
if (nums[start] == last) {
backtracking1(nums, start + 1);
return;
}
Integer length = map.get(nums[start]);
for (int i = 0; i <= length; i++) {
for (int j = 0; j < i; j++) {
cur.add(nums[start]);
}
if (i != 0) {
result.add(new ArrayList<>(cur));
}
last = nums[start];
backtracking1(nums, start + 1);
for (int j = 0; j < i; j++) {
cur.remove(cur.size() - 1);
}
}
}
List<Integer> t = new ArrayList<Integer>();
List<List<Integer>> ans = new ArrayList<List<Integer>>();
/**
* 官方迭代法实现子集遍历代码实现时可以先将数组排序迭代时若发现没有选择上一个数且当前数字与上一个数相同则可以跳过当前生成的子集
* @param nums
* @return
*/
public List<List<Integer>> subsetsWithDup2(int[] nums) {
Arrays.sort(nums);
int n = nums.length;
for (int mask = 0; mask < (1 << n); ++mask) {
t.clear();
boolean flag = true;
for (int i = 0; i < n; ++i) {
if ((mask & (1 << i)) != 0) {
if (i > 0 && (mask >> (i - 1) & 1) == 0 && nums[i] == nums[i - 1]) {
flag = false;
break;
}
t.add(nums[i]);
}
}
if (flag) {
ans.add(new ArrayList<Integer>(t));
}
}
return ans;
}
}

View File

@ -6,5 +6,700 @@
@Author : dingjiawen @Author : dingjiawen
@Date : 2022/10/11 18:55 @Date : 2022/10/11 18:55
@Usage : @Usage :
@Desc : @Desc : RNet直接进行分类
''' '''
# -*- coding: utf-8 -*-
# coding: utf-8
import tensorflow as tf
import tensorflow.keras
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
from condition_monitoring.data_deal import loadData
from model.Joint_Monitoring.compare.RNet_C import Joint_Monitoring
from model.CommonFunction.CommonFunction import *
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import load_model, save_model
import random
'''超参数设置'''
time_stamp = 120
feature_num = 10
batch_size = 16
learning_rate = 0.001
EPOCH = 101
model_name = "RNet_C"
'''EWMA超参数'''
K = 18
namuda = 0.01
'''保存名称'''
save_name = "./model/weight/{0}/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
time_stamp,
feature_num,
batch_size,
EPOCH)
'''文件名'''
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
'''
文件说明jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
'''
'''文件参数'''
# 最后正常的时间点
healthy_date = 415548
# 最后异常的时间点
unhealthy_date = 432153
# 异常容忍程度
unhealthy_patience = 5
# 画图相关设置
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
def remove(data, time_stamp=time_stamp):
rows, cols = data.shape
print("remove_data.shape:", data.shape)
num = int(rows / time_stamp)
return data[:num * time_stamp, :]
pass
# 不重叠采样
def get_training_data(data, time_stamp: int = time_stamp):
removed_data = remove(data=data)
rows, cols = removed_data.shape
print("removed_data.shape:", data.shape)
print("removed_data:", removed_data)
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
print("train_data:", train_data)
batchs, time_stamp, cols = train_data.shape
for i in range(1, batchs):
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
if i == 1:
train_label = each_label
else:
train_label = np.concatenate([train_label, each_label], axis=0)
print("train_data.shape:", train_data.shape)
print("train_label.shape", train_label.shape)
return train_data[:-1, :], train_label
# 重叠采样
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
rows, cols = data.shape
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
for i in range(rows):
if i + time_stamp >= rows:
break
if i + time_stamp < rows - 1:
train_data[i] = data[i:i + time_stamp]
train_label[i] = data[i + time_stamp]
print("重叠采样以后:")
print("data:", train_data) # (300334,120,10)
print("label:", train_label) # (300334,10)
if is_Healthy:
train_label2 = np.ones(shape=[train_label.shape[0]])
else:
train_label2 = np.zeros(shape=[train_label.shape[0]])
print("label2:", train_label2)
return train_data, train_label, train_label2
# RepConv重参数化卷积
def RepConv(input_tensor, k=3):
_, _, output_dim = input_tensor.shape
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
b1 = tf.keras.layers.BatchNormalization()(conv1)
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
# RepBlock模块
def RepBlock(input_tensor, num: int = 3):
for i in range(num):
input_tensor = RepConv(input_tensor)
return input_tensor
# GAP 全局平均池化
def Global_avg_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
output = tf.multiply(input_tensor, s1)
return output
# GDP 全局动态池化
def Global_Dynamic_channelAttention(input_tensor):
_, length, channel = input_tensor.shape
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
# GAP
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
s1 = tf.nn.sigmoid(c1)
# GMP
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
s3 = tf.nn.sigmoid(c2)
output = tf.multiply(input_tensor, s1)
return output
# 归一化
def normalization(data):
rows, cols = data.shape
print("归一化之前:", data)
print(data.shape)
print("======================")
# 归一化
max = np.max(data, axis=0)
max = np.broadcast_to(max, [rows, cols])
min = np.min(data, axis=0)
min = np.broadcast_to(min, [rows, cols])
data = (data - min) / (max - min)
print("归一化之后:", data)
print(data.shape)
return data
# 正则化
def Regularization(data):
rows, cols = data.shape
print("正则化之前:", data)
print(data.shape)
print("======================")
# 正则化
mean = np.mean(data, axis=0)
mean = np.broadcast_to(mean, shape=[rows, cols])
dst = np.sqrt(np.var(data, axis=0))
dst = np.broadcast_to(dst, shape=[rows, cols])
data = (data - mean) / dst
print("正则化之后:", data)
print(data.shape)
return data
pass
def EWMA(data, K=K, namuda=namuda):
# t是啥暂时未知
t = 0
mid = np.mean(data, axis=0)
standard = np.sqrt(np.var(data, axis=0))
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
return mid, UCL, LCL
pass
def condition_monitoring_model():
input = tf.keras.Input(shape=[time_stamp, feature_num])
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
d1 = tf.keras.layers.Dense(300)(GRU1)
output = tf.keras.layers.Dense(10)(d1)
model = tf.keras.Model(inputs=input, outputs=output)
return model
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
train_label1,
train_label2,
test_size=split_size,
shuffle=True,
random_state=100)
if is_split:
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
train_data = np.concatenate([train_data, test_data], axis=0)
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2
pass
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
split_size: float = 0.2, shuffle: bool = True):
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
label1,
label2,
test_size=split_size,
shuffle=shuffle,
random_state=100)
# print(train_data.shape)
# print(train_label1.shape)
# print(train_label2.shape)
# print(train_data.shape)
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
pass
# trian_data:(300455,120,10)
# trian_label1:(300455,10)
# trian_label2:(300455,)
def train_step_one(train_data, train_label1, train_label2):
model = Joint_Monitoring()
# # # # TODO 需要运行编译一次,才能打印model.summary()
# model.build(input_shape=(batch_size, filter_num, dims))
# model.summary()
history_loss = []
history_val_loss = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=True)
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
is_first_time=True)
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
print('Training loss is :', loss_value.numpy())
print('Validating loss is :', val_loss.numpy())
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
# step_two_model = Joint_Monitoring()
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
# step_two_model.summary()
history_loss = []
history_val_loss = []
history_accuracy = []
learning_rate = 1e-3
for epoch in range(EPOCH):
print()
print("EPOCH:", epoch, "/", EPOCH, ":")
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
if epoch == 0:
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
train_label2,
is_split=True)
# print()
# print("EPOCH:", epoch, "/", EPOCH, ":")
# 用于让train知道这是这个epoch中的第几次训练
z = 0
# 用于batch_size次再训练
k = 1
accuracy_num = 0
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
size, _, _ = train_data.shape
data_1 = tf.expand_dims(data_1, axis=0)
label_1 = tf.expand_dims(label_1, axis=0)
label_2 = tf.expand_dims(label_2, axis=0)
if batch_size != 1:
if k % batch_size == 1:
data = data_1
label1 = label_1
label2 = label_2
else:
data = tf.concat([data, data_1], axis=0)
label1 = tf.concat([label1, label_1], axis=0)
label2 = tf.concat([label2, label_2], axis=0)
else:
data = data_1
label1 = label_1
label2 = label_2
if k % batch_size == 0:
# label = tf.expand_dims(label, axis=-1)
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
learning_rate=learning_rate,
is_first_time=False)
accuracy_num += accuracy_value
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
accuracy_num / ((z + 1) * batch_size))
k = 0
z = z + 1
k = k + 1
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
val_label2=val_label2,
is_first_time=False, step_one_model=step_one_model)
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
accuracy_value=val_accuracy)
history_val_loss.append(val_loss)
history_loss.append(loss_value.numpy())
history_accuracy.append(val_accuracy)
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
accuracy_num / ((z + 1) * batch_size)))
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
if IsStopTraining(history_loss=history_val_loss, patience=7):
break
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
if learning_rate >= 1e-4:
learning_rate = learning_rate * 0.1
pass
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
history_loss = []
history_val_loss = []
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
val_label2=test_label2,
is_first_time=False, step_one_model=step_one_model)
history_val_loss.append(val_loss)
print("val_accuracy:", val_accuracy)
print("val_loss:", val_loss)
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
# 获取模型的所有参数的个数
# step_two_model.count_params()
total_result = []
size, length, dims = test_data.shape
for epoch in range(0, size - batch_size + 1, batch_size):
each_test_data = test_data[epoch:epoch + batch_size, :, :]
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
total_result.append(output4)
total_result = np.reshape(total_result, [total_result.__len__(), -1])
total_result = np.reshape(total_result, [-1, ])
if isSave:
np.savetxt(save_mse_name, total_result, delimiter=',')
if isPlot:
plt.tight_layout()
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
# 画出 y=1 这条水平线
plt.axhline(0.5, c='red', label='Failure threshold')
# 箭头指向上面的水平线
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
# alpha=0.9, overhang=0.5)
# plt.text(35000, 0.9, "Truth Fault", fontsize=10, color='black', verticalalignment='top')
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
plt.xlabel("time",fontdict=font1)
plt.ylabel("confience",fontdict=font1)
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
horizontalalignment='center',
bbox={'facecolor': 'grey',
'pad': 10},fontdict=font1)
plt.grid()
# plt.ylim(0, 1)
# plt.xlim(-50, 1300)
# plt.legend("", loc='upper left')
plt.show()
return total_result
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
predicted_data1 = []
predicted_data2 = []
predicted_data3 = []
size, length, dims = data.shape
for epoch in range(0, size, batch_size):
each_test_data = data[epoch:epoch + batch_size, :, :]
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
if epoch == 0:
predicted_data1 = output1
predicted_data2 = output2
predicted_data3 = output3
else:
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
predict_data = 0
predict_data = predicted_data1
mseList = []
meanList = []
maxList = []
for i in range(1, 4):
print("i:", i)
if i == 1:
predict_data = predicted_data1
elif i == 2:
predict_data = predicted_data2
elif i == 3:
predict_data = predicted_data3
temp = np.abs(predict_data - label)
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
temp3 = temp1 / temp2
mse = np.sum((temp1 / temp2) ** 2, axis=1)
print("mse.shape:", mse.shape)
# mse=np.mean((predicted_data-label)**2,axis=1)
# print("mse", mse)
mseList.append(mse)
if isStandard:
dims, = mse.shape
mean = np.mean(mse)
std = np.sqrt(np.var(mse))
max = mean + 3 * std
print("max.shape:", max.shape)
# min = mean-3*std
max = np.broadcast_to(max, shape=[dims, ])
# min = np.broadcast_to(min,shape=[dims,])
mean = np.broadcast_to(mean, shape=[dims, ])
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(max)
plt.plot(mse)
plt.plot(mean)
# plt.plot(min)
plt.show()
maxList.append(max)
meanList.append(mean)
else:
if isPlot:
plt.figure(random.randint(1, 100))
plt.plot(mse)
# plt.plot(min)
plt.show()
return mseList, meanList, maxList
# pass
# healthy_data是健康数据,用于确定阈值all_data是完整的数据,用于模型出结果
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
isSave: bool = False, predictI: int = 1):
# TODO 计算MSE确定阈值
# plt.ion()
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
# 误报率的计算
total, = mse.shape
faultNum = 0
faultList = []
for i in range(total):
if (mse[i] > max[i]):
faultNum += 1
faultList.append(mse[i])
fault_rate = faultNum / total
print("误报率:", fault_rate)
# 漏报率计算
missNum = 0
missList = []
all, = mse1.shape
for i in range(all):
if (mse1[i] < max[0]):
missNum += 1
missList.append(mse1[i])
miss_rate = missNum / all
print("漏报率:", miss_rate)
# 总体图
print("mse:", mse)
print("mse1:", mse1)
print("============================================")
total_mse = np.concatenate([mse, mse1], axis=0)
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
# min = np.broadcast_to(min,shape=[dims,])
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
if isSave:
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
np.savetxt(save_mse_name1,total_mse, delimiter=',')
np.savetxt(save_max_name1,total_max, delimiter=',')
plt.figure(random.randint(1, 100))
plt.plot(total_max)
plt.plot(total_mse)
plt.plot(total_mean)
# plt.plot(min)
plt.show()
pass
if __name__ == '__main__':
total_data = loadData.execute(N=feature_num, file_name=file_name)
total_data = normalization(data=total_data)
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
total_data[:healthy_date, :], is_Healthy=True)
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
is_Healthy=False)
#### TODO 第一步训练
# 单次测试
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
# step_one_model = Joint_Monitoring()
# # step_one_model.load_weights(save_name)
# #
# step_two_model = Joint_Monitoring()
# step_two_model.load_weights(save_name)
#### TODO 第二步训练
### healthy_data.shape: (300333,120,10)
### unhealthy_data.shape: (16594,10)
# healthy_size, _, _ = train_data_healthy.shape
# unhealthy_size, _, _ = train_data_unhealthy.shape
# train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
# healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
# healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
# unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
# train_data=train_data,
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
healthy_size, _, _ = train_data_healthy.shape
unhealthy_size, _, _ = train_data_unhealthy.shape
# all_data, _, _ = get_training_data_overlapping(
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
##出结果单次测试
# getResult(step_one_model,
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
# :],
# healthy_label=train_label1_healthy[
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
### TODO 测试测试集
# step_one_model = Joint_Monitoring()
# step_one_model.load_weights(save_name)
step_two_model = Joint_Monitoring()
step_two_model.load_weights(save_step_two_name)
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
# test_label2=np.expand_dims(test_label2, axis=-1))
###TODO 展示全部的结果
all_data, _, _ = get_training_data_overlapping(
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
# all_data = np.concatenate([])
# 单次测试
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
showResult(step_two_model, test_data=all_data, isPlot=True)
pass

View File

@ -6,5 +6,5 @@
@Author : dingjiawen @Author : dingjiawen
@Date : 2022/10/11 19:00 @Date : 2022/10/11 19:00
@Usage : @Usage :
@Desc : @Desc : 使用MSE作为损失函数的RNet
''' '''

View File

@ -0,0 +1,42 @@
1一张图
1-1占满整行用于显示比较重要的结果
plt.figure(1,figsize=(6.0,2.68))
plt.subplots_adjust(left=0.1,right=0.94, bottom=0.2, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
1-2不沾满整行一般的结果显示
plt.figure(1,figsize=(5.25,2.34))
plt.subplots_adjust(left=0.11,right=0.94, bottom=0.22, top=0.9, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
2两张图为一列单张图的大小
2-1.小图
plt.figure(1,figsize=(3.0,1.65))
plt.subplots_adjust(left=0.20,right=0.94, bottom=0.27, top=0.92, wspace=None,
hspace=None) #上下左右的调整
plt.tight_layout()
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
2-2.大图
plt.figure(1,figsize=(3.0,2.0))
plt.subplots_adjust(left=0.21,right=0.94, bottom=0.25, top=0.92, wspace=None,
hspace=None)
plt.tight_layout()
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
2-3.方形图
**一般用不到
2-4.一行三个
**一般用不到
3一张图显示多个例如4个图2*2排列
plt.figure(1,figsize=(3.0,3.25))
plt.subplot(211)
plt.subplots_adjust(left=0.20,right=0.94, bottom=0.14, top=0.93)
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体

View File

@ -0,0 +1,455 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:DCAU只分类不预测
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# step three
# 分类器
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# tf.nn.softmax
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss= 0
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss)
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs

View File

@ -5,7 +5,7 @@
@Author : dingjiawen @Author : dingjiawen
@Date : 2022/7/14 9:40 @Date : 2022/7/14 9:40
@Usage : 联合监测模型 @Usage : 联合监测模型
@Desc : RNet:去除掉DCAU @Desc : RNet:LCAU
''' '''
import tensorflow as tf import tensorflow as tf

View File

@ -0,0 +1,447 @@
# _*_ coding: UTF-8 _*_
'''
@Author : dingjiawen
@Date : 2022/7/14 9:40
@Usage : 联合监测模型
@Desc : RNet:去除掉DCAU
'''
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
from condition_monitoring.data_deal import loadData
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
class Joint_Monitoring(keras.Model):
def __init__(self, conv_filter=20):
# 调用父类__init__()方法
super(Joint_Monitoring, self).__init__()
# step one
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
# self.DACU2 = DynamicChannelAttention()
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
# self.DACU3 = DynamicChannelAttention()
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
self.p1 = DynamicPooling(pool_size=2)
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
# self.DACU4 = DynamicChannelAttention()
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
self.p2 = DynamicPooling(pool_size=4)
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
self.p3 = DynamicPooling(pool_size=2)
# step two
# 重现原数据
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
# loss
self.train_loss = []
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
# DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(upsample1)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
# DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(upsample2)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
# DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(concat1)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
output1 = []
output2 = []
output3 = []
output4 = []
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
else:
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
return output1, output2, output3, output4
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
# step one
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
conv1 = self.conv1(RepDCBlock1)
conv1 = tf.nn.leaky_relu(conv1)
conv1 = tf.keras.layers.BatchNormalization()(conv1)
upsample1 = self.upsample1(conv1)
# DACU2 = self.DACU2(upsample1)
DACU2 = tf.keras.layers.BatchNormalization()(upsample1)
RepDCBlock2 = self.RepDCBlock2(DACU2)
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
conv2 = self.conv2(RepDCBlock2)
conv2 = tf.nn.leaky_relu(conv2)
conv2 = tf.keras.layers.BatchNormalization()(conv2)
upsample2 = self.upsample2(conv2)
# DACU3 = self.DACU3(upsample2)
DACU3 = tf.keras.layers.BatchNormalization()(upsample2)
RepDCBlock3 = self.RepDCBlock3(DACU3)
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
conv3 = self.conv3(RepDCBlock3)
conv3 = tf.nn.leaky_relu(conv3)
conv3 = tf.keras.layers.BatchNormalization()(conv3)
concat1 = tf.concat([conv2, conv3], axis=1)
# DACU4 = self.DACU4(concat1)
DACU4 = tf.keras.layers.BatchNormalization()(concat1)
RepDCBlock4 = self.RepDCBlock4(DACU4)
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
conv4 = self.conv4(RepDCBlock4)
conv4 = tf.nn.leaky_relu(conv4)
conv4 = tf.keras.layers.BatchNormalization()(conv4)
concat2 = tf.concat([conv1, conv4], axis=1)
RepDCBlock5 = self.RepDCBlock5(concat2)
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
if is_first_time:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# reduce_mean降维计算均值
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
print("MSE_loss1:", MSE_loss1.numpy())
print("MSE_loss2:", MSE_loss2.numpy())
print("MSE_loss3:", MSE_loss3.numpy())
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
Accuracy_num = 0
else:
# step two
# 重现原数据
# 接block3
GRU1 = self.GRU1(RepDCBlock3)
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
d1 = self.d1(GRU1)
# tf.nn.softmax
output1 = self.output1(d1)
# 接block4
GRU2 = self.GRU2(RepDCBlock4)
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
d2 = self.d2(GRU2)
# tf.nn.softmax
output2 = self.output2(d2)
# 接block5
GRU3 = self.GRU3(RepDCBlock5)
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
d3 = self.d3(GRU3)
# tf.nn.softmax
output3 = self.output3(d3)
# 多尺度动态池化
# p1 = self.p1(output1)
# B, _, _ = p1.shape
# f1 = tf.reshape(p1, shape=[B, -1])
# p2 = self.p2(output2)
# f2 = tf.reshape(p2, shape=[B, -1])
# p3 = self.p3(output3)
# f3 = tf.reshape(p3, shape=[B, -1])
# step three
# 分类器
concat3 = tf.concat([output1, output2, output3], axis=1)
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
d4 = self.d4(concat3)
d5 = self.d5(d4)
# d4 = tf.keras.layers.BatchNormalization()(d4)
output4 = self.output4(d5)
# reduce_mean降维计算均值
MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
Cross_Entropy_loss = tf.reduce_mean(
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
print("MSE_loss:", MSE_loss.numpy())
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
loss = MSE_loss + Cross_Entropy_loss
return loss, Accuracy_num
def get_Accuracy(self, output, label):
predict_label = tf.round(output)
label = tf.cast(label, dtype=tf.float32)
t = np.array(label - predict_label)
b = t[t[:] == 0]
return b.__len__()
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
pred_5=None):
with tf.GradientTape() as tape:
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
# tape.watch(self.variables)
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
# 保存一下loss用于输出
self.train_loss = L
g = tape.gradient(L, self.variables)
return g, Accuracy_num
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
pred_4=None, pred_5=None):
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
pred_3=pred_3,
pred_4=pred_4, pred_5=pred_5)
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
return self.train_loss, Accuracy_num
# 暂时只支持batch_size等于1,不然要传z比较麻烦
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
step_one_model=None):
val_loss = []
accuracy_num = 0
output1 = 0
output2 = 0
output3 = 0
z = 1
size, length, dims = val_data.shape
if batch_size == None:
batch_size = self.batch_size
for epoch in range(0, size - batch_size, batch_size):
each_val_data = val_data[epoch:epoch + batch_size, :, :]
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
# each_val_data = tf.expand_dims(each_val_data, axis=0)
# each_val_query = tf.expand_dims(each_val_query, axis=0)
# each_val_label = tf.expand_dims(each_val_label, axis=0)
if not is_first_time:
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
is_first_time=is_first_time,
pred_3=output1, pred_4=output2, pred_5=output3)
accuracy_num += each_accuracy_num
val_loss.append(each_loss)
z += 1
val_accuracy = accuracy_num / ((z-1) * batch_size)
val_total_loss = tf.reduce_mean(val_loss)
return val_total_loss, val_accuracy
class RevConv(keras.layers.Layer):
def __init__(self, kernel_size=3):
# 调用父类__init__()方法
super(RevConv, self).__init__()
self.kernel_size = kernel_size
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size
}
)
base_config = super(RevConv, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape):
# print(input_shape)
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
padding='causal',
dilation_rate=4)
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
dilation_rate=4)
# self.b2 = tf.keras.layers.BatchNormalization()
# self.b3 = tf.keras.layers.BatchNormalization()
# out = tf.keras.layers.Add()([b1, b2, b3])
# out = tf.nn.relu(out)
def call(self, inputs, **kwargs):
conv1 = self.conv1(inputs)
b1 = tf.keras.layers.BatchNormalization()(conv1)
b1 = tf.nn.leaky_relu(b1)
# b1 = self.b1
conv2 = self.conv2(inputs)
b2 = tf.keras.layers.BatchNormalization()(conv2)
b2 = tf.nn.leaky_relu(b2)
b3 = tf.keras.layers.BatchNormalization()(inputs)
out = tf.keras.layers.Add()([b1, b2, b3])
out = tf.nn.relu(out)
return out
class RevConvBlock(keras.layers.Layer):
def __init__(self, num: int = 3, kernel_size=3):
# 调用父类__init__()方法
super(RevConvBlock, self).__init__()
self.num = num
self.kernel_size = kernel_size
self.L = []
for i in range(num):
RepVGG = RevConv(kernel_size=kernel_size)
self.L.append(RepVGG)
def get_config(self):
# 自定义层里面的属性
config = (
{
'kernel_size': self.kernel_size,
'num': self.num
}
)
base_config = super(RevConvBlock, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs, **kwargs):
for i in range(self.num):
inputs = self.L[i](inputs)
return inputs