leecode更新
This commit is contained in:
parent
60a7641c65
commit
c881127f48
|
|
@ -0,0 +1,103 @@
|
|||
package com.markilue.leecode.backtrace;
|
||||
|
||||
import org.junit.Test;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
/**
|
||||
* @BelongsProject: Leecode
|
||||
* @BelongsPackage: com.markilue.leecode.backtrace
|
||||
* @Author: markilue
|
||||
* @CreateTime: 2022-10-18 09:33
|
||||
* @Description:
|
||||
* TODO 力扣78题 子集:
|
||||
* 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
|
||||
* 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
|
||||
* @Version: 1.0
|
||||
*/
|
||||
public class Subsets {
|
||||
|
||||
@Test
|
||||
public void test(){
|
||||
int[] nums = {1,2,3};
|
||||
System.out.println(subsets1(nums));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test1(){
|
||||
int[] nums = {4,9,2};
|
||||
System.out.println(subsets(nums));
|
||||
}
|
||||
|
||||
/**
|
||||
* 子集思路:所有数组中的数都可以分为有他和没有他
|
||||
* 速度击败100%,内存击败83.67%
|
||||
* @param nums
|
||||
* @return
|
||||
*/
|
||||
public List<List<Integer>> subsets(int[] nums) {
|
||||
result.add(new ArrayList<>(cur));
|
||||
backtracking(nums,0);
|
||||
return result;
|
||||
}
|
||||
|
||||
List<List<Integer>> result =new ArrayList<>();
|
||||
List<Integer> cur =new ArrayList<>();
|
||||
|
||||
|
||||
public void backtracking(int[] nums, int i) {
|
||||
|
||||
if(i>=nums.length){
|
||||
return;
|
||||
}
|
||||
|
||||
for (int j = 0; j < 2; j++) {
|
||||
//在界限内的话,每次都加上
|
||||
if(j==0){
|
||||
cur.add(nums[i]);
|
||||
//这里只在0时加,因为后面会删,自动就是没有他的情况
|
||||
result.add(new ArrayList<Integer>(cur));
|
||||
}
|
||||
backtracking(nums,i+1);
|
||||
if(j==0){
|
||||
cur.remove(cur.size()-1);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* 官方思路:一依次遍历
|
||||
* 速度击败100%,内存击败93.56%
|
||||
* @param nums
|
||||
* @return
|
||||
*/
|
||||
public List<List<Integer>> subsets1(int[] nums) {
|
||||
// result.add(new ArrayList<>(cur));
|
||||
backtracking1(nums,0);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
public void backtracking1(int[] nums, int i) {
|
||||
|
||||
result.add(new ArrayList<>(cur));
|
||||
|
||||
if(i>=nums.length){
|
||||
return;
|
||||
}
|
||||
|
||||
for (int j = i; j < nums.length; j++) {
|
||||
cur.add(nums[j]);
|
||||
backtracking1(nums,j+1);
|
||||
cur.remove(cur.size()-1);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,175 @@
|
|||
package com.markilue.leecode.backtrace;
|
||||
|
||||
import com.markilue.leecode.stackAndDeque.EvalRPN;
|
||||
import org.junit.Test;
|
||||
|
||||
import javax.print.DocFlavor;
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
* @BelongsProject: Leecode
|
||||
* @BelongsPackage: com.markilue.leecode.backtrace
|
||||
* @Author: markilue
|
||||
* @CreateTime: 2022-10-18 10:28
|
||||
* @Description: TODO 力扣90题 子集II:
|
||||
* 给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。
|
||||
* 解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。
|
||||
* @Version: 1.0
|
||||
*/
|
||||
public class SubsetsWithDup {
|
||||
|
||||
@Test
|
||||
public void test() {
|
||||
int[] nums = {1, 2, 2};
|
||||
System.out.println(subsetsWithDup(nums));
|
||||
}
|
||||
|
||||
@Test
|
||||
public void test1() {
|
||||
int[] nums = {1, 3, 3, 5};
|
||||
System.out.println(subsetsWithDup1(nums));
|
||||
}
|
||||
|
||||
|
||||
List<List<Integer>> result = new ArrayList<>();
|
||||
List<Integer> cur = new ArrayList<>();
|
||||
|
||||
|
||||
/**
|
||||
* 自己思路1: 数组中包含重复元素,为了避免添加重复子集,类似于组合II中使用used数组,记录是否同一树层该数被使用过
|
||||
* 速度击败99.83%,内存击败25.91%
|
||||
* @param nums
|
||||
* @return
|
||||
*/
|
||||
public List<List<Integer>> subsetsWithDup(int[] nums) {
|
||||
|
||||
result.add(new ArrayList<>(cur));
|
||||
|
||||
Arrays.sort(nums);
|
||||
boolean[] used = new boolean[nums.length];
|
||||
backtracking(nums, 0, used);
|
||||
return result;
|
||||
}
|
||||
|
||||
public void backtracking(int[] nums, int start, boolean[] used) {
|
||||
|
||||
|
||||
if (start >= nums.length) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = start; i < nums.length; i++) {
|
||||
//不同树层则直接跳过
|
||||
if (i >= 1 && nums[i] == nums[i - 1] && used[i - 1] == true) {
|
||||
used[start] = true;
|
||||
continue;
|
||||
}else {
|
||||
cur.add(nums[i]);
|
||||
result.add(new ArrayList<>(cur));
|
||||
//不同树层之间可以使用相同的数字
|
||||
used[i] = false;
|
||||
}
|
||||
backtracking(nums, i + 1, used);
|
||||
cur.remove(cur.size() - 1);
|
||||
//相同树层之间不能使用相同的数字
|
||||
used[i] = true;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
//<数字,使用次数>
|
||||
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
|
||||
int last;
|
||||
|
||||
/**
|
||||
* 自己思路2:数组中包含重复元素,为了避免添加重复子集,提前记录数字的个数,采用该数字使用过几次的方式进行遍历
|
||||
* 速度击败99.83%,内存击败54.06%
|
||||
*
|
||||
* @param nums
|
||||
* @return
|
||||
*/
|
||||
public List<List<Integer>> subsetsWithDup1(int[] nums) {
|
||||
result.add(new ArrayList<>(cur));
|
||||
|
||||
Arrays.sort(nums);
|
||||
|
||||
//存放<数字,次数>
|
||||
for (int num : nums) {
|
||||
map.put(num, map.getOrDefault(num, 0) + 1);
|
||||
}
|
||||
last = Integer.MAX_VALUE;
|
||||
backtracking1(nums, 0);
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
public void backtracking1(int[] nums, int start) {
|
||||
|
||||
|
||||
if (start >= nums.length) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (nums[start] == last) {
|
||||
backtracking1(nums, start + 1);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
Integer length = map.get(nums[start]);
|
||||
|
||||
for (int i = 0; i <= length; i++) {
|
||||
for (int j = 0; j < i; j++) {
|
||||
cur.add(nums[start]);
|
||||
}
|
||||
if (i != 0) {
|
||||
result.add(new ArrayList<>(cur));
|
||||
}
|
||||
last = nums[start];
|
||||
backtracking1(nums, start + 1);
|
||||
for (int j = 0; j < i; j++) {
|
||||
cur.remove(cur.size() - 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
List<Integer> t = new ArrayList<Integer>();
|
||||
List<List<Integer>> ans = new ArrayList<List<Integer>>();
|
||||
|
||||
/**
|
||||
* 官方迭代法实现子集遍历:代码实现时,可以先将数组排序;迭代时,若发现没有选择上一个数,且当前数字与上一个数相同,则可以跳过当前生成的子集。
|
||||
* @param nums
|
||||
* @return
|
||||
*/
|
||||
public List<List<Integer>> subsetsWithDup2(int[] nums) {
|
||||
Arrays.sort(nums);
|
||||
int n = nums.length;
|
||||
for (int mask = 0; mask < (1 << n); ++mask) {
|
||||
t.clear();
|
||||
boolean flag = true;
|
||||
for (int i = 0; i < n; ++i) {
|
||||
if ((mask & (1 << i)) != 0) {
|
||||
if (i > 0 && (mask >> (i - 1) & 1) == 0 && nums[i] == nums[i - 1]) {
|
||||
flag = false;
|
||||
break;
|
||||
}
|
||||
t.add(nums[i]);
|
||||
}
|
||||
}
|
||||
if (flag) {
|
||||
ans.add(new ArrayList<Integer>(t));
|
||||
}
|
||||
}
|
||||
return ans;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
@ -6,5 +6,700 @@
|
|||
@Author : dingjiawen
|
||||
@Date : 2022/10/11 18:55
|
||||
@Usage :
|
||||
@Desc :
|
||||
'''
|
||||
@Desc : RNet直接进行分类
|
||||
'''
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# coding: utf-8
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
||||
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention
|
||||
from condition_monitoring.data_deal import loadData
|
||||
from model.Joint_Monitoring.compare.RNet_C import Joint_Monitoring
|
||||
|
||||
from model.CommonFunction.CommonFunction import *
|
||||
from sklearn.model_selection import train_test_split
|
||||
from tensorflow.keras.models import load_model, save_model
|
||||
import random
|
||||
|
||||
'''超参数设置'''
|
||||
time_stamp = 120
|
||||
feature_num = 10
|
||||
batch_size = 16
|
||||
learning_rate = 0.001
|
||||
EPOCH = 101
|
||||
model_name = "RNet_C"
|
||||
'''EWMA超参数'''
|
||||
K = 18
|
||||
namuda = 0.01
|
||||
'''保存名称'''
|
||||
|
||||
save_name = "./model/weight/{0}/weight".format(model_name,
|
||||
time_stamp,
|
||||
feature_num,
|
||||
batch_size,
|
||||
EPOCH)
|
||||
save_step_two_name = "./model/two_weight/{0}_weight_epoch6_99899_9996/weight".format(model_name,
|
||||
time_stamp,
|
||||
feature_num,
|
||||
batch_size,
|
||||
EPOCH)
|
||||
|
||||
save_mse_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_result.csv".format(model_name,
|
||||
time_stamp,
|
||||
feature_num,
|
||||
batch_size,
|
||||
EPOCH)
|
||||
save_max_name = "./mse/RNet_C/{0}_timestamp{1}_feature{2}_max.csv".format(model_name,
|
||||
time_stamp,
|
||||
feature_num,
|
||||
batch_size,
|
||||
EPOCH)
|
||||
|
||||
'''文件名'''
|
||||
file_name = "G:\data\SCADA数据\jb4q_8_delete_total_zero.csv"
|
||||
|
||||
'''
|
||||
文件说明:jb4q_8_delete_total_zero.csv是删除了只删除了全是0的列的文件
|
||||
文件从0:415548行均是正常值(2019/7.30 00:00:00 - 2019/9/18 11:14:00)
|
||||
从415549:432153行均是异常值(2019/9/18 11:21:01 - 2021/1/18 00:00:00)
|
||||
'''
|
||||
'''文件参数'''
|
||||
# 最后正常的时间点
|
||||
healthy_date = 415548
|
||||
# 最后异常的时间点
|
||||
unhealthy_date = 432153
|
||||
# 异常容忍程度
|
||||
unhealthy_patience = 5
|
||||
|
||||
|
||||
# 画图相关设置
|
||||
font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 10} # 设置坐标标签的字体大小,字体
|
||||
|
||||
|
||||
def remove(data, time_stamp=time_stamp):
|
||||
rows, cols = data.shape
|
||||
print("remove_data.shape:", data.shape)
|
||||
num = int(rows / time_stamp)
|
||||
|
||||
return data[:num * time_stamp, :]
|
||||
pass
|
||||
|
||||
|
||||
# 不重叠采样
|
||||
def get_training_data(data, time_stamp: int = time_stamp):
|
||||
removed_data = remove(data=data)
|
||||
rows, cols = removed_data.shape
|
||||
print("removed_data.shape:", data.shape)
|
||||
print("removed_data:", removed_data)
|
||||
train_data = np.reshape(removed_data, [-1, time_stamp, cols])
|
||||
print("train_data:", train_data)
|
||||
batchs, time_stamp, cols = train_data.shape
|
||||
|
||||
for i in range(1, batchs):
|
||||
each_label = np.expand_dims(train_data[i, 0, :], axis=0)
|
||||
if i == 1:
|
||||
train_label = each_label
|
||||
else:
|
||||
train_label = np.concatenate([train_label, each_label], axis=0)
|
||||
|
||||
print("train_data.shape:", train_data.shape)
|
||||
print("train_label.shape", train_label.shape)
|
||||
return train_data[:-1, :], train_label
|
||||
|
||||
|
||||
# 重叠采样
|
||||
def get_training_data_overlapping(data, time_stamp: int = time_stamp, is_Healthy: bool = True):
|
||||
rows, cols = data.shape
|
||||
train_data = np.empty(shape=[rows - time_stamp - 1, time_stamp, cols])
|
||||
train_label = np.empty(shape=[rows - time_stamp - 1, cols])
|
||||
for i in range(rows):
|
||||
if i + time_stamp >= rows:
|
||||
break
|
||||
if i + time_stamp < rows - 1:
|
||||
train_data[i] = data[i:i + time_stamp]
|
||||
train_label[i] = data[i + time_stamp]
|
||||
|
||||
print("重叠采样以后:")
|
||||
print("data:", train_data) # (300334,120,10)
|
||||
print("label:", train_label) # (300334,10)
|
||||
|
||||
if is_Healthy:
|
||||
train_label2 = np.ones(shape=[train_label.shape[0]])
|
||||
else:
|
||||
train_label2 = np.zeros(shape=[train_label.shape[0]])
|
||||
|
||||
print("label2:", train_label2)
|
||||
|
||||
return train_data, train_label, train_label2
|
||||
|
||||
|
||||
# RepConv重参数化卷积
|
||||
def RepConv(input_tensor, k=3):
|
||||
_, _, output_dim = input_tensor.shape
|
||||
conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=k, strides=1, padding='SAME')(input_tensor)
|
||||
b1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
|
||||
conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='SAME')(input_tensor)
|
||||
b2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
|
||||
b3 = tf.keras.layers.BatchNormalization()(input_tensor)
|
||||
|
||||
out = tf.keras.layers.Add()([b1, b2, b3])
|
||||
out = tf.nn.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
# RepBlock模块
|
||||
def RepBlock(input_tensor, num: int = 3):
|
||||
for i in range(num):
|
||||
input_tensor = RepConv(input_tensor)
|
||||
return input_tensor
|
||||
|
||||
|
||||
# GAP 全局平均池化
|
||||
def Global_avg_channelAttention(input_tensor):
|
||||
_, length, channel = input_tensor.shape
|
||||
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
|
||||
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
|
||||
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
|
||||
s1 = tf.nn.sigmoid(c1)
|
||||
output = tf.multiply(input_tensor, s1)
|
||||
return output
|
||||
|
||||
|
||||
# GDP 全局动态池化
|
||||
def Global_Dynamic_channelAttention(input_tensor):
|
||||
_, length, channel = input_tensor.shape
|
||||
DWC1 = DepthwiseConv1D(kernel_size=1, padding='SAME')(input_tensor)
|
||||
|
||||
# GAP
|
||||
GAP = tf.keras.layers.GlobalAvgPool1D()(DWC1)
|
||||
c1 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GAP)
|
||||
s1 = tf.nn.sigmoid(c1)
|
||||
|
||||
# GMP
|
||||
GMP = tf.keras.layers.GlobalMaxPool1D()(DWC1)
|
||||
c2 = tf.keras.layers.Conv1D(filters=channel, kernel_size=1, padding='SAME')(GMP)
|
||||
s3 = tf.nn.sigmoid(c2)
|
||||
|
||||
output = tf.multiply(input_tensor, s1)
|
||||
return output
|
||||
|
||||
|
||||
# 归一化
|
||||
def normalization(data):
|
||||
rows, cols = data.shape
|
||||
print("归一化之前:", data)
|
||||
print(data.shape)
|
||||
print("======================")
|
||||
|
||||
# 归一化
|
||||
max = np.max(data, axis=0)
|
||||
max = np.broadcast_to(max, [rows, cols])
|
||||
min = np.min(data, axis=0)
|
||||
min = np.broadcast_to(min, [rows, cols])
|
||||
|
||||
data = (data - min) / (max - min)
|
||||
print("归一化之后:", data)
|
||||
print(data.shape)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
# 正则化
|
||||
def Regularization(data):
|
||||
rows, cols = data.shape
|
||||
print("正则化之前:", data)
|
||||
print(data.shape)
|
||||
print("======================")
|
||||
|
||||
# 正则化
|
||||
mean = np.mean(data, axis=0)
|
||||
mean = np.broadcast_to(mean, shape=[rows, cols])
|
||||
dst = np.sqrt(np.var(data, axis=0))
|
||||
dst = np.broadcast_to(dst, shape=[rows, cols])
|
||||
data = (data - mean) / dst
|
||||
print("正则化之后:", data)
|
||||
print(data.shape)
|
||||
|
||||
return data
|
||||
pass
|
||||
|
||||
|
||||
def EWMA(data, K=K, namuda=namuda):
|
||||
# t是啥暂时未知
|
||||
t = 0
|
||||
mid = np.mean(data, axis=0)
|
||||
standard = np.sqrt(np.var(data, axis=0))
|
||||
UCL = mid + K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
|
||||
LCL = mid - K * standard * np.sqrt(namuda / (2 - namuda) * (1 - (1 - namuda) ** 2 * t))
|
||||
return mid, UCL, LCL
|
||||
pass
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def condition_monitoring_model():
|
||||
input = tf.keras.Input(shape=[time_stamp, feature_num])
|
||||
conv1 = tf.keras.layers.Conv1D(filters=256, kernel_size=1)(input)
|
||||
GRU1 = tf.keras.layers.GRU(128, return_sequences=False)(conv1)
|
||||
d1 = tf.keras.layers.Dense(300)(GRU1)
|
||||
output = tf.keras.layers.Dense(10)(d1)
|
||||
|
||||
model = tf.keras.Model(inputs=input, outputs=output)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
# trian_data:(300455,120,10)
|
||||
# trian_label1:(300455,10)
|
||||
# trian_label2:(300455,)
|
||||
def shuffle(train_data, train_label1, train_label2, is_split: bool = False, split_size: float = 0.2):
|
||||
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(train_data,
|
||||
train_label1,
|
||||
train_label2,
|
||||
test_size=split_size,
|
||||
shuffle=True,
|
||||
random_state=100)
|
||||
if is_split:
|
||||
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
|
||||
train_data = np.concatenate([train_data, test_data], axis=0)
|
||||
train_label1 = np.concatenate([train_label1, test_label1], axis=0)
|
||||
train_label2 = np.concatenate([train_label2, test_label2], axis=0)
|
||||
# print(train_data.shape)
|
||||
# print(train_label1.shape)
|
||||
# print(train_label2.shape)
|
||||
# print(train_data.shape)
|
||||
|
||||
return train_data, train_label1, train_label2
|
||||
pass
|
||||
|
||||
|
||||
def split_test_data(healthy_data, healthy_label1, healthy_label2, unhealthy_data, unhealthy_label1, unhealthy_label2,
|
||||
split_size: float = 0.2, shuffle: bool = True):
|
||||
data = np.concatenate([healthy_data, unhealthy_data], axis=0)
|
||||
label1 = np.concatenate([healthy_label1, unhealthy_label1], axis=0)
|
||||
label2 = np.concatenate([healthy_label2, unhealthy_label2], axis=0)
|
||||
(train_data, test_data, train_label1, test_label1, train_label2, test_label2) = train_test_split(data,
|
||||
label1,
|
||||
label2,
|
||||
test_size=split_size,
|
||||
shuffle=shuffle,
|
||||
random_state=100)
|
||||
|
||||
# print(train_data.shape)
|
||||
# print(train_label1.shape)
|
||||
# print(train_label2.shape)
|
||||
# print(train_data.shape)
|
||||
|
||||
return train_data, train_label1, train_label2, test_data, test_label1, test_label2
|
||||
|
||||
pass
|
||||
|
||||
|
||||
# trian_data:(300455,120,10)
|
||||
# trian_label1:(300455,10)
|
||||
# trian_label2:(300455,)
|
||||
def train_step_one(train_data, train_label1, train_label2):
|
||||
model = Joint_Monitoring()
|
||||
# # # # TODO 需要运行编译一次,才能打印model.summary()
|
||||
# model.build(input_shape=(batch_size, filter_num, dims))
|
||||
# model.summary()
|
||||
history_loss = []
|
||||
history_val_loss = []
|
||||
learning_rate = 1e-3
|
||||
for epoch in range(EPOCH):
|
||||
|
||||
print()
|
||||
print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
|
||||
if epoch == 0:
|
||||
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
|
||||
train_label2,
|
||||
is_split=True)
|
||||
# print()
|
||||
# print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||
# 用于让train知道,这是这个epoch中的第几次训练
|
||||
z = 0
|
||||
# 用于batch_size次再训练
|
||||
k = 1
|
||||
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
|
||||
size, _, _ = train_data.shape
|
||||
data_1 = tf.expand_dims(data_1, axis=0)
|
||||
label_1 = tf.expand_dims(label_1, axis=0)
|
||||
label_2 = tf.expand_dims(label_2, axis=0)
|
||||
if batch_size != 1:
|
||||
if k % batch_size == 1:
|
||||
data = data_1
|
||||
label1 = label_1
|
||||
label2 = label_2
|
||||
else:
|
||||
data = tf.concat([data, data_1], axis=0)
|
||||
label1 = tf.concat([label1, label_1], axis=0)
|
||||
label2 = tf.concat([label2, label_2], axis=0)
|
||||
else:
|
||||
data = data_1
|
||||
label1 = label_1
|
||||
label2 = label_2
|
||||
|
||||
if k % batch_size == 0:
|
||||
# label = tf.expand_dims(label, axis=-1)
|
||||
loss_value, accuracy_value = model.train(input_tensor=data, label1=label1, label2=label2,
|
||||
learning_rate=learning_rate,
|
||||
is_first_time=True)
|
||||
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy())
|
||||
k = 0
|
||||
z = z + 1
|
||||
k = k + 1
|
||||
val_loss, val_accuracy = model.get_val_loss(val_data=val_data, val_label1=val_label1, val_label2=val_label2,
|
||||
is_first_time=True)
|
||||
SaveBestModel(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
|
||||
# SaveBestH5Model(model=model, save_name=save_name, history_loss=history_val_loss, loss_value=val_loss.numpy())
|
||||
history_val_loss.append(val_loss)
|
||||
history_loss.append(loss_value.numpy())
|
||||
print('Training loss is :', loss_value.numpy())
|
||||
print('Validating loss is :', val_loss.numpy())
|
||||
if IsStopTraining(history_loss=history_val_loss, patience=7):
|
||||
break
|
||||
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
||||
if learning_rate >= 1e-4:
|
||||
learning_rate = learning_rate * 0.1
|
||||
pass
|
||||
|
||||
|
||||
def train_step_two(step_one_model, step_two_model, train_data, train_label1, train_label2):
|
||||
# step_two_model = Joint_Monitoring()
|
||||
# step_two_model.build(input_shape=(batch_size, time_stamp, feature_num))
|
||||
# step_two_model.summary()
|
||||
history_loss = []
|
||||
history_val_loss = []
|
||||
history_accuracy = []
|
||||
learning_rate = 1e-3
|
||||
for epoch in range(EPOCH):
|
||||
print()
|
||||
print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||
train_data, train_label1, train_label2 = shuffle(train_data, train_label1, train_label2)
|
||||
if epoch == 0:
|
||||
train_data, train_label1, train_label2, val_data, val_label1, val_label2 = shuffle(train_data, train_label1,
|
||||
train_label2,
|
||||
is_split=True)
|
||||
# print()
|
||||
# print("EPOCH:", epoch, "/", EPOCH, ":")
|
||||
# 用于让train知道,这是这个epoch中的第几次训练
|
||||
z = 0
|
||||
# 用于batch_size次再训练
|
||||
k = 1
|
||||
accuracy_num = 0
|
||||
for data_1, label_1, label_2 in zip(train_data, train_label1, train_label2):
|
||||
size, _, _ = train_data.shape
|
||||
data_1 = tf.expand_dims(data_1, axis=0)
|
||||
label_1 = tf.expand_dims(label_1, axis=0)
|
||||
label_2 = tf.expand_dims(label_2, axis=0)
|
||||
if batch_size != 1:
|
||||
if k % batch_size == 1:
|
||||
data = data_1
|
||||
label1 = label_1
|
||||
label2 = label_2
|
||||
else:
|
||||
data = tf.concat([data, data_1], axis=0)
|
||||
label1 = tf.concat([label1, label_1], axis=0)
|
||||
label2 = tf.concat([label2, label_2], axis=0)
|
||||
else:
|
||||
data = data_1
|
||||
label1 = label_1
|
||||
label2 = label_2
|
||||
|
||||
if k % batch_size == 0:
|
||||
# label = tf.expand_dims(label, axis=-1)
|
||||
# output1, output2, output3, _ = step_one_model.call(inputs=data, is_first_time=True)
|
||||
loss_value, accuracy_value = step_two_model.train(input_tensor=data, label1=label1, label2=label2,
|
||||
learning_rate=learning_rate,
|
||||
is_first_time=False)
|
||||
accuracy_num += accuracy_value
|
||||
print(z * batch_size, "/", size, ":===============>", "loss:", loss_value.numpy(), "| accuracy:",
|
||||
accuracy_num / ((z + 1) * batch_size))
|
||||
k = 0
|
||||
z = z + 1
|
||||
k = k + 1
|
||||
|
||||
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=val_data, val_label1=val_label1,
|
||||
val_label2=val_label2,
|
||||
is_first_time=False, step_one_model=step_one_model)
|
||||
SaveBestModelByAccuracy(model=step_two_model, save_name=save_step_two_name, history_accuracy=history_accuracy,
|
||||
accuracy_value=val_accuracy)
|
||||
history_val_loss.append(val_loss)
|
||||
history_loss.append(loss_value.numpy())
|
||||
history_accuracy.append(val_accuracy)
|
||||
print('Training loss is : {0} | Training accuracy is : {1}'.format(loss_value.numpy(),
|
||||
accuracy_num / ((z + 1) * batch_size)))
|
||||
print('Validating loss is : {0} | Validating accuracy is : {1}'.format(val_loss.numpy(), val_accuracy))
|
||||
if IsStopTraining(history_loss=history_val_loss, patience=7):
|
||||
break
|
||||
if Is_Reduce_learning_rate(history_loss=history_val_loss, patience=3):
|
||||
if learning_rate >= 1e-4:
|
||||
learning_rate = learning_rate * 0.1
|
||||
pass
|
||||
|
||||
|
||||
def test(step_one_model, step_two_model, test_data, test_label1, test_label2):
|
||||
history_loss = []
|
||||
history_val_loss = []
|
||||
|
||||
val_loss, val_accuracy = step_two_model.get_val_loss(val_data=test_data, val_label1=test_label1,
|
||||
val_label2=test_label2,
|
||||
is_first_time=False, step_one_model=step_one_model)
|
||||
|
||||
history_val_loss.append(val_loss)
|
||||
print("val_accuracy:", val_accuracy)
|
||||
print("val_loss:", val_loss)
|
||||
|
||||
|
||||
def showResult(step_two_model: Joint_Monitoring, test_data, isPlot: bool = False,isSave:bool=True):
|
||||
# 获取模型的所有参数的个数
|
||||
# step_two_model.count_params()
|
||||
total_result = []
|
||||
size, length, dims = test_data.shape
|
||||
for epoch in range(0, size - batch_size + 1, batch_size):
|
||||
each_test_data = test_data[epoch:epoch + batch_size, :, :]
|
||||
_, _, _, output4 = step_two_model.call(each_test_data, is_first_time=False)
|
||||
total_result.append(output4)
|
||||
total_result = np.reshape(total_result, [total_result.__len__(), -1])
|
||||
total_result = np.reshape(total_result, [-1, ])
|
||||
if isSave:
|
||||
|
||||
np.savetxt(save_mse_name, total_result, delimiter=',')
|
||||
if isPlot:
|
||||
plt.tight_layout()
|
||||
plt.scatter(list(range(total_result.shape[0])), total_result, c='black', s=10)
|
||||
# 画出 y=1 这条水平线
|
||||
plt.axhline(0.5, c='red', label='Failure threshold')
|
||||
# 箭头指向上面的水平线
|
||||
# plt.arrow(35000, 0.9, 33000, 0.75, head_width=0.02, head_length=0.1, shape="full", fc='red', ec='red',
|
||||
# alpha=0.9, overhang=0.5)
|
||||
# plt.text(35000, 0.9, "Truth Fault", fontsize=10, color='black', verticalalignment='top')
|
||||
plt.axvline(test_data.shape[0] * 2 / 3, c='blue', ls='-.')
|
||||
plt.xlabel("time",fontdict=font1)
|
||||
plt.ylabel("confience",fontdict=font1)
|
||||
plt.text(total_result.shape[0] * 4 / 5, 0.6, "Fault", fontsize=10, color='black', verticalalignment='top',
|
||||
horizontalalignment='center',
|
||||
bbox={'facecolor': 'grey',
|
||||
'pad': 10},fontdict=font1)
|
||||
plt.text(total_result.shape[0] * 1 / 3, 0.4, "Norm", fontsize=10, color='black', verticalalignment='top',
|
||||
horizontalalignment='center',
|
||||
bbox={'facecolor': 'grey',
|
||||
'pad': 10},fontdict=font1)
|
||||
|
||||
plt.grid()
|
||||
# plt.ylim(0, 1)
|
||||
# plt.xlim(-50, 1300)
|
||||
# plt.legend("", loc='upper left')
|
||||
plt.show()
|
||||
return total_result
|
||||
|
||||
|
||||
def get_MSE(data, label, new_model, isStandard: bool = True, isPlot: bool = True, predictI: int = 1):
|
||||
predicted_data1 = []
|
||||
predicted_data2 = []
|
||||
predicted_data3 = []
|
||||
size, length, dims = data.shape
|
||||
for epoch in range(0, size, batch_size):
|
||||
each_test_data = data[epoch:epoch + batch_size, :, :]
|
||||
output1, output2, output3, _ = new_model.call(inputs=each_test_data, is_first_time=True)
|
||||
if epoch == 0:
|
||||
predicted_data1 = output1
|
||||
predicted_data2 = output2
|
||||
predicted_data3 = output3
|
||||
else:
|
||||
predicted_data1 = np.concatenate([predicted_data1, output1], axis=0)
|
||||
predicted_data2 = np.concatenate([predicted_data2, output2], axis=0)
|
||||
predicted_data3 = np.concatenate([predicted_data3, output3], axis=0)
|
||||
|
||||
predicted_data1 = np.reshape(predicted_data1, [-1, 10])
|
||||
predicted_data2 = np.reshape(predicted_data2, [-1, 10])
|
||||
predicted_data3 = np.reshape(predicted_data3, [-1, 10])
|
||||
predict_data = 0
|
||||
|
||||
predict_data = predicted_data1
|
||||
mseList = []
|
||||
meanList = []
|
||||
maxList = []
|
||||
|
||||
for i in range(1, 4):
|
||||
print("i:", i)
|
||||
if i == 1:
|
||||
predict_data = predicted_data1
|
||||
elif i == 2:
|
||||
predict_data = predicted_data2
|
||||
elif i == 3:
|
||||
predict_data = predicted_data3
|
||||
temp = np.abs(predict_data - label)
|
||||
temp1 = (temp - np.broadcast_to(np.mean(temp, axis=0), shape=predict_data.shape))
|
||||
temp2 = np.broadcast_to(np.sqrt(np.var(temp, axis=0)), shape=predict_data.shape)
|
||||
temp3 = temp1 / temp2
|
||||
mse = np.sum((temp1 / temp2) ** 2, axis=1)
|
||||
|
||||
print("mse.shape:", mse.shape)
|
||||
# mse=np.mean((predicted_data-label)**2,axis=1)
|
||||
# print("mse", mse)
|
||||
mseList.append(mse)
|
||||
if isStandard:
|
||||
dims, = mse.shape
|
||||
mean = np.mean(mse)
|
||||
std = np.sqrt(np.var(mse))
|
||||
max = mean + 3 * std
|
||||
print("max.shape:", max.shape)
|
||||
# min = mean-3*std
|
||||
max = np.broadcast_to(max, shape=[dims, ])
|
||||
# min = np.broadcast_to(min,shape=[dims,])
|
||||
mean = np.broadcast_to(mean, shape=[dims, ])
|
||||
if isPlot:
|
||||
plt.figure(random.randint(1, 100))
|
||||
plt.plot(max)
|
||||
plt.plot(mse)
|
||||
plt.plot(mean)
|
||||
# plt.plot(min)
|
||||
plt.show()
|
||||
maxList.append(max)
|
||||
meanList.append(mean)
|
||||
else:
|
||||
if isPlot:
|
||||
plt.figure(random.randint(1, 100))
|
||||
plt.plot(mse)
|
||||
# plt.plot(min)
|
||||
plt.show()
|
||||
|
||||
return mseList, meanList, maxList
|
||||
# pass
|
||||
|
||||
|
||||
# healthy_data是健康数据,用于确定阈值,all_data是完整的数据,用于模型出结果
|
||||
def getResult(model: tf.keras.Model, healthy_data, healthy_label, unhealthy_data, unhealthy_label, isPlot: bool = False,
|
||||
isSave: bool = False, predictI: int = 1):
|
||||
# TODO 计算MSE确定阈值
|
||||
# plt.ion()
|
||||
mseList, meanList, maxList = get_MSE(healthy_data, healthy_label, model)
|
||||
mse1List, _, _ = get_MSE(unhealthy_data, unhealthy_label, model, isStandard=False)
|
||||
|
||||
for mse, mean, max, mse1,j in zip(mseList, meanList, maxList, mse1List,range(3)):
|
||||
|
||||
# 误报率的计算
|
||||
total, = mse.shape
|
||||
faultNum = 0
|
||||
faultList = []
|
||||
for i in range(total):
|
||||
if (mse[i] > max[i]):
|
||||
faultNum += 1
|
||||
faultList.append(mse[i])
|
||||
|
||||
fault_rate = faultNum / total
|
||||
print("误报率:", fault_rate)
|
||||
|
||||
# 漏报率计算
|
||||
missNum = 0
|
||||
missList = []
|
||||
all, = mse1.shape
|
||||
for i in range(all):
|
||||
if (mse1[i] < max[0]):
|
||||
missNum += 1
|
||||
missList.append(mse1[i])
|
||||
|
||||
miss_rate = missNum / all
|
||||
print("漏报率:", miss_rate)
|
||||
|
||||
# 总体图
|
||||
print("mse:", mse)
|
||||
print("mse1:", mse1)
|
||||
print("============================================")
|
||||
total_mse = np.concatenate([mse, mse1], axis=0)
|
||||
total_max = np.broadcast_to(max[0], shape=[total_mse.shape[0], ])
|
||||
# min = np.broadcast_to(min,shape=[dims,])
|
||||
total_mean = np.broadcast_to(mean[0], shape=[total_mse.shape[0], ])
|
||||
|
||||
if isSave:
|
||||
save_mse_name1=save_mse_name[:-4]+"_predict"+str(j+1)+".csv"
|
||||
save_max_name1=save_max_name[:-4]+"_predict"+str(j+1)+".csv"
|
||||
|
||||
np.savetxt(save_mse_name1,total_mse, delimiter=',')
|
||||
np.savetxt(save_max_name1,total_max, delimiter=',')
|
||||
|
||||
|
||||
plt.figure(random.randint(1, 100))
|
||||
plt.plot(total_max)
|
||||
plt.plot(total_mse)
|
||||
plt.plot(total_mean)
|
||||
# plt.plot(min)
|
||||
plt.show()
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
total_data = loadData.execute(N=feature_num, file_name=file_name)
|
||||
total_data = normalization(data=total_data)
|
||||
train_data_healthy, train_label1_healthy, train_label2_healthy = get_training_data_overlapping(
|
||||
total_data[:healthy_date, :], is_Healthy=True)
|
||||
train_data_unhealthy, train_label1_unhealthy, train_label2_unhealthy = get_training_data_overlapping(
|
||||
total_data[healthy_date - time_stamp + unhealthy_patience:unhealthy_date, :],
|
||||
is_Healthy=False)
|
||||
#### TODO 第一步训练
|
||||
# 单次测试
|
||||
# train_step_one(train_data=train_data_healthy[:32, :, :], train_label1=train_label1_healthy[:32, :],train_label2=train_label2_healthy[:32, ])
|
||||
# train_step_one(train_data=train_data_healthy, train_label1=train_label1_healthy, train_label2=train_label2_healthy)
|
||||
|
||||
# 导入第一步已经训练好的模型,一个继续训练,一个只输出结果
|
||||
# step_one_model = Joint_Monitoring()
|
||||
# # step_one_model.load_weights(save_name)
|
||||
# #
|
||||
# step_two_model = Joint_Monitoring()
|
||||
# step_two_model.load_weights(save_name)
|
||||
|
||||
#### TODO 第二步训练
|
||||
### healthy_data.shape: (300333,120,10)
|
||||
### unhealthy_data.shape: (16594,10)
|
||||
# healthy_size, _, _ = train_data_healthy.shape
|
||||
# unhealthy_size, _, _ = train_data_unhealthy.shape
|
||||
# train_data, train_label1, train_label2, test_data, test_label1, test_label2 = split_test_data(
|
||||
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:, :, :],
|
||||
# healthy_label1=train_label1_healthy[healthy_size - 2 * unhealthy_size:, :],
|
||||
# healthy_label2=train_label2_healthy[healthy_size - 2 * unhealthy_size:, ], unhealthy_data=train_data_unhealthy,
|
||||
# unhealthy_label1=train_label1_unhealthy, unhealthy_label2=train_label2_unhealthy)
|
||||
# train_step_two(step_one_model=step_one_model, step_two_model=step_two_model,
|
||||
# train_data=train_data,
|
||||
# train_label1=train_label1, train_label2=np.expand_dims(train_label2, axis=-1))
|
||||
|
||||
healthy_size, _, _ = train_data_healthy.shape
|
||||
unhealthy_size, _, _ = train_data_unhealthy.shape
|
||||
# all_data, _, _ = get_training_data_overlapping(
|
||||
# total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
|
||||
|
||||
##出结果单次测试
|
||||
# getResult(step_one_model,
|
||||
# healthy_data=train_data_healthy[healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200,
|
||||
# :],
|
||||
# healthy_label=train_label1_healthy[
|
||||
# healthy_size - 2 * unhealthy_size:healthy_size - 2 * unhealthy_size + 200, :],
|
||||
# unhealthy_data=train_data_unhealthy[:200, :], unhealthy_label=train_label1_unhealthy[:200, :],isSave=True)
|
||||
|
||||
### TODO 测试测试集
|
||||
# step_one_model = Joint_Monitoring()
|
||||
# step_one_model.load_weights(save_name)
|
||||
step_two_model = Joint_Monitoring()
|
||||
step_two_model.load_weights(save_step_two_name)
|
||||
# test(step_one_model=step_one_model, step_two_model=step_two_model, test_data=test_data, test_label1=test_label1,
|
||||
# test_label2=np.expand_dims(test_label2, axis=-1))
|
||||
|
||||
###TODO 展示全部的结果
|
||||
all_data, _, _ = get_training_data_overlapping(
|
||||
total_data[healthy_size - 2 * unhealthy_size:unhealthy_date, :], is_Healthy=True)
|
||||
# all_data = np.concatenate([])
|
||||
# 单次测试
|
||||
# showResult(step_two_model, test_data=all_data[:32], isPlot=True)
|
||||
showResult(step_two_model, test_data=all_data, isPlot=True)
|
||||
|
||||
pass
|
||||
|
|
@ -6,5 +6,5 @@
|
|||
@Author : dingjiawen
|
||||
@Date : 2022/10/11 19:00
|
||||
@Usage :
|
||||
@Desc :
|
||||
@Desc : 使用MSE作为损失函数的RNet
|
||||
'''
|
||||
|
|
@ -0,0 +1,42 @@
|
|||
1:一张图
|
||||
1-1:占满整行(用于显示比较重要的结果)
|
||||
plt.figure(1,figsize=(6.0,2.68))
|
||||
plt.subplots_adjust(left=0.1,right=0.94, bottom=0.2, top=0.9, wspace=None,
|
||||
hspace=None)
|
||||
plt.tight_layout()
|
||||
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
|
||||
|
||||
1-2:不沾满整行(一般的结果显示)
|
||||
plt.figure(1,figsize=(5.25,2.34))
|
||||
plt.subplots_adjust(left=0.11,right=0.94, bottom=0.22, top=0.9, wspace=None,
|
||||
hspace=None)
|
||||
plt.tight_layout()
|
||||
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
|
||||
|
||||
2:两张图为一列,单张图的大小
|
||||
2-1.小图
|
||||
plt.figure(1,figsize=(3.0,1.65))
|
||||
plt.subplots_adjust(left=0.20,right=0.94, bottom=0.27, top=0.92, wspace=None,
|
||||
hspace=None) #上下左右的调整
|
||||
plt.tight_layout()
|
||||
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
|
||||
|
||||
|
||||
2-2.大图
|
||||
plt.figure(1,figsize=(3.0,2.0))
|
||||
plt.subplots_adjust(left=0.21,right=0.94, bottom=0.25, top=0.92, wspace=None,
|
||||
hspace=None)
|
||||
plt.tight_layout()
|
||||
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
|
||||
|
||||
2-3.方形图
|
||||
**一般用不到
|
||||
|
||||
2-4.一行三个
|
||||
**一般用不到
|
||||
|
||||
3:一张图,显示多个(例如4个图,2*2排列)
|
||||
plt.figure(1,figsize=(3.0,3.25))
|
||||
plt.subplot(211)
|
||||
plt.subplots_adjust(left=0.20,right=0.94, bottom=0.14, top=0.93)
|
||||
font1 = {'family' : 'Times New Roman', 'weight' : 'normal','size': 10} # 设置坐标标签的字体大小,字体
|
||||
|
|
@ -0,0 +1,455 @@
|
|||
# _*_ coding: UTF-8 _*_
|
||||
|
||||
|
||||
'''
|
||||
@Author : dingjiawen
|
||||
@Date : 2022/7/14 9:40
|
||||
@Usage : 联合监测模型
|
||||
@Desc : RNet:DCAU只分类,不预测
|
||||
'''
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras as keras
|
||||
from tensorflow.keras import *
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
||||
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
|
||||
from condition_monitoring.data_deal import loadData
|
||||
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
|
||||
|
||||
|
||||
class Joint_Monitoring(keras.Model):
|
||||
|
||||
def __init__(self, conv_filter=20):
|
||||
# 调用父类__init__()方法
|
||||
super(Joint_Monitoring, self).__init__()
|
||||
# step one
|
||||
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
|
||||
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
|
||||
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
|
||||
|
||||
self.DACU2 = DynamicChannelAttention()
|
||||
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
|
||||
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
|
||||
|
||||
self.DACU3 = DynamicChannelAttention()
|
||||
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.p1 = DynamicPooling(pool_size=2)
|
||||
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
|
||||
|
||||
self.DACU4 = DynamicChannelAttention()
|
||||
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.p2 = DynamicPooling(pool_size=4)
|
||||
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
|
||||
|
||||
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.p3 = DynamicPooling(pool_size=2)
|
||||
|
||||
# step two
|
||||
# 重现原数据
|
||||
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
|
||||
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
|
||||
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
|
||||
# step three
|
||||
# 分类器
|
||||
self.d4 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.d5 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
# tf.nn.softmax
|
||||
self.output4 = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)
|
||||
|
||||
|
||||
# loss
|
||||
self.train_loss = []
|
||||
|
||||
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
|
||||
# step one
|
||||
RepDCBlock1 = self.RepDCBlock1(inputs)
|
||||
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
|
||||
conv1 = self.conv1(RepDCBlock1)
|
||||
conv1 = tf.nn.leaky_relu(conv1)
|
||||
conv1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
upsample1 = self.upsample1(conv1)
|
||||
|
||||
DACU2 = self.DACU2(upsample1)
|
||||
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
|
||||
RepDCBlock2 = self.RepDCBlock2(DACU2)
|
||||
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
|
||||
conv2 = self.conv2(RepDCBlock2)
|
||||
conv2 = tf.nn.leaky_relu(conv2)
|
||||
conv2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
upsample2 = self.upsample2(conv2)
|
||||
|
||||
DACU3 = self.DACU3(upsample2)
|
||||
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
|
||||
RepDCBlock3 = self.RepDCBlock3(DACU3)
|
||||
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
|
||||
conv3 = self.conv3(RepDCBlock3)
|
||||
conv3 = tf.nn.leaky_relu(conv3)
|
||||
conv3 = tf.keras.layers.BatchNormalization()(conv3)
|
||||
|
||||
concat1 = tf.concat([conv2, conv3], axis=1)
|
||||
|
||||
DACU4 = self.DACU4(concat1)
|
||||
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
|
||||
RepDCBlock4 = self.RepDCBlock4(DACU4)
|
||||
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
|
||||
conv4 = self.conv4(RepDCBlock4)
|
||||
conv4 = tf.nn.leaky_relu(conv4)
|
||||
conv4 = tf.keras.layers.BatchNormalization()(conv4)
|
||||
|
||||
concat2 = tf.concat([conv1, conv4], axis=1)
|
||||
|
||||
RepDCBlock5 = self.RepDCBlock5(concat2)
|
||||
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
|
||||
|
||||
output1 = []
|
||||
output2 = []
|
||||
output3 = []
|
||||
output4 = []
|
||||
|
||||
if is_first_time:
|
||||
# step two
|
||||
# 重现原数据
|
||||
# 接block3
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
else:
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
|
||||
# 多尺度动态池化
|
||||
# p1 = self.p1(output1)
|
||||
# B, _, _ = p1.shape
|
||||
# f1 = tf.reshape(p1, shape=[B, -1])
|
||||
# p2 = self.p2(output2)
|
||||
# f2 = tf.reshape(p2, shape=[B, -1])
|
||||
# p3 = self.p3(output3)
|
||||
# f3 = tf.reshape(p3, shape=[B, -1])
|
||||
# step three
|
||||
# 分类器
|
||||
concat3 = tf.concat([output1, output2, output3], axis=1)
|
||||
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
|
||||
d4 = self.d4(concat3)
|
||||
d5 = self.d5(d4)
|
||||
# d4 = tf.keras.layers.BatchNormalization()(d4)
|
||||
output4 = self.output4(d5)
|
||||
|
||||
return output1, output2, output3, output4
|
||||
|
||||
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
|
||||
pred_5=None):
|
||||
# step one
|
||||
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
|
||||
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
|
||||
conv1 = self.conv1(RepDCBlock1)
|
||||
conv1 = tf.nn.leaky_relu(conv1)
|
||||
conv1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
upsample1 = self.upsample1(conv1)
|
||||
|
||||
DACU2 = self.DACU2(upsample1)
|
||||
DACU2 = tf.keras.layers.BatchNormalization()(DACU2)
|
||||
RepDCBlock2 = self.RepDCBlock2(DACU2)
|
||||
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
|
||||
conv2 = self.conv2(RepDCBlock2)
|
||||
conv2 = tf.nn.leaky_relu(conv2)
|
||||
conv2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
upsample2 = self.upsample2(conv2)
|
||||
|
||||
DACU3 = self.DACU3(upsample2)
|
||||
DACU3 = tf.keras.layers.BatchNormalization()(DACU3)
|
||||
RepDCBlock3 = self.RepDCBlock3(DACU3)
|
||||
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
|
||||
conv3 = self.conv3(RepDCBlock3)
|
||||
conv3 = tf.nn.leaky_relu(conv3)
|
||||
conv3 = tf.keras.layers.BatchNormalization()(conv3)
|
||||
|
||||
concat1 = tf.concat([conv2, conv3], axis=1)
|
||||
|
||||
DACU4 = self.DACU4(concat1)
|
||||
DACU4 = tf.keras.layers.BatchNormalization()(DACU4)
|
||||
RepDCBlock4 = self.RepDCBlock4(DACU4)
|
||||
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
|
||||
conv4 = self.conv4(RepDCBlock4)
|
||||
conv4 = tf.nn.leaky_relu(conv4)
|
||||
conv4 = tf.keras.layers.BatchNormalization()(conv4)
|
||||
|
||||
concat2 = tf.concat([conv1, conv4], axis=1)
|
||||
|
||||
RepDCBlock5 = self.RepDCBlock5(concat2)
|
||||
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
|
||||
|
||||
if is_first_time:
|
||||
# step two
|
||||
# 重现原数据
|
||||
# 接block3
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
|
||||
# reduce_mean降维计算均值
|
||||
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
|
||||
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
|
||||
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
|
||||
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
|
||||
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
|
||||
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
|
||||
|
||||
print("MSE_loss1:", MSE_loss1.numpy())
|
||||
print("MSE_loss2:", MSE_loss2.numpy())
|
||||
print("MSE_loss3:", MSE_loss3.numpy())
|
||||
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
|
||||
Accuracy_num = 0
|
||||
|
||||
else:
|
||||
# step two
|
||||
# 重现原数据
|
||||
# 接block3
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
|
||||
# 多尺度动态池化
|
||||
# p1 = self.p1(output1)
|
||||
# B, _, _ = p1.shape
|
||||
# f1 = tf.reshape(p1, shape=[B, -1])
|
||||
# p2 = self.p2(output2)
|
||||
# f2 = tf.reshape(p2, shape=[B, -1])
|
||||
# p3 = self.p3(output3)
|
||||
# f3 = tf.reshape(p3, shape=[B, -1])
|
||||
# step three
|
||||
# 分类器
|
||||
concat3 = tf.concat([output1, output2, output3], axis=1)
|
||||
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
|
||||
d4 = self.d4(concat3)
|
||||
d5 = self.d5(d4)
|
||||
# d4 = tf.keras.layers.BatchNormalization()(d4)
|
||||
output4 = self.output4(d5)
|
||||
|
||||
# reduce_mean降维计算均值
|
||||
MSE_loss= 0
|
||||
# MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
|
||||
# MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
|
||||
# MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
|
||||
Cross_Entropy_loss = tf.reduce_mean(
|
||||
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
|
||||
|
||||
print("MSE_loss:", MSE_loss)
|
||||
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
|
||||
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
|
||||
loss = Cross_Entropy_loss
|
||||
return loss, Accuracy_num
|
||||
|
||||
def get_Accuracy(self, output, label):
|
||||
|
||||
predict_label = tf.round(output)
|
||||
label = tf.cast(label, dtype=tf.float32)
|
||||
|
||||
t = np.array(label - predict_label)
|
||||
|
||||
b = t[t[:] == 0]
|
||||
|
||||
return b.__len__()
|
||||
|
||||
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
|
||||
pred_5=None):
|
||||
with tf.GradientTape() as tape:
|
||||
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
|
||||
# tape.watch(self.variables)
|
||||
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
|
||||
pred_3=pred_3,
|
||||
pred_4=pred_4, pred_5=pred_5)
|
||||
# 保存一下loss,用于输出
|
||||
self.train_loss = L
|
||||
g = tape.gradient(L, self.variables)
|
||||
return g, Accuracy_num
|
||||
|
||||
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
|
||||
pred_4=None, pred_5=None):
|
||||
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
|
||||
pred_3=pred_3,
|
||||
pred_4=pred_4, pred_5=pred_5)
|
||||
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
|
||||
return self.train_loss, Accuracy_num
|
||||
|
||||
# 暂时只支持batch_size等于1,不然要传z比较麻烦
|
||||
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
|
||||
step_one_model=None):
|
||||
val_loss = []
|
||||
accuracy_num = 0
|
||||
output1 = 0
|
||||
output2 = 0
|
||||
output3 = 0
|
||||
z = 1
|
||||
size, length, dims = val_data.shape
|
||||
if batch_size == None:
|
||||
batch_size = self.batch_size
|
||||
for epoch in range(0, size - batch_size, batch_size):
|
||||
each_val_data = val_data[epoch:epoch + batch_size, :, :]
|
||||
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
|
||||
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
|
||||
# each_val_data = tf.expand_dims(each_val_data, axis=0)
|
||||
# each_val_query = tf.expand_dims(each_val_query, axis=0)
|
||||
# each_val_label = tf.expand_dims(each_val_label, axis=0)
|
||||
if not is_first_time:
|
||||
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
|
||||
|
||||
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
|
||||
is_first_time=is_first_time,
|
||||
pred_3=output1, pred_4=output2, pred_5=output3)
|
||||
accuracy_num += each_accuracy_num
|
||||
val_loss.append(each_loss)
|
||||
z += 1
|
||||
|
||||
val_accuracy = accuracy_num / ((z-1) * batch_size)
|
||||
val_total_loss = tf.reduce_mean(val_loss)
|
||||
return val_total_loss, val_accuracy
|
||||
|
||||
|
||||
class RevConv(keras.layers.Layer):
|
||||
|
||||
def __init__(self, kernel_size=3):
|
||||
# 调用父类__init__()方法
|
||||
super(RevConv, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
|
||||
def get_config(self):
|
||||
# 自定义层里面的属性
|
||||
config = (
|
||||
{
|
||||
'kernel_size': self.kernel_size
|
||||
}
|
||||
)
|
||||
base_config = super(RevConv, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
def build(self, input_shape):
|
||||
# print(input_shape)
|
||||
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
|
||||
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
|
||||
padding='causal',
|
||||
dilation_rate=4)
|
||||
|
||||
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
|
||||
dilation_rate=4)
|
||||
# self.b2 = tf.keras.layers.BatchNormalization()
|
||||
|
||||
# self.b3 = tf.keras.layers.BatchNormalization()
|
||||
|
||||
# out = tf.keras.layers.Add()([b1, b2, b3])
|
||||
# out = tf.nn.relu(out)
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
conv1 = self.conv1(inputs)
|
||||
b1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
b1 = tf.nn.leaky_relu(b1)
|
||||
# b1 = self.b1
|
||||
|
||||
conv2 = self.conv2(inputs)
|
||||
b2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
b2 = tf.nn.leaky_relu(b2)
|
||||
|
||||
b3 = tf.keras.layers.BatchNormalization()(inputs)
|
||||
|
||||
out = tf.keras.layers.Add()([b1, b2, b3])
|
||||
out = tf.nn.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class RevConvBlock(keras.layers.Layer):
|
||||
|
||||
def __init__(self, num: int = 3, kernel_size=3):
|
||||
# 调用父类__init__()方法
|
||||
super(RevConvBlock, self).__init__()
|
||||
self.num = num
|
||||
self.kernel_size = kernel_size
|
||||
self.L = []
|
||||
for i in range(num):
|
||||
RepVGG = RevConv(kernel_size=kernel_size)
|
||||
self.L.append(RepVGG)
|
||||
|
||||
def get_config(self):
|
||||
# 自定义层里面的属性
|
||||
config = (
|
||||
{
|
||||
'kernel_size': self.kernel_size,
|
||||
'num': self.num
|
||||
}
|
||||
)
|
||||
base_config = super(RevConvBlock, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
for i in range(self.num):
|
||||
inputs = self.L[i](inputs)
|
||||
return inputs
|
||||
|
|
@ -5,7 +5,7 @@
|
|||
@Author : dingjiawen
|
||||
@Date : 2022/7/14 9:40
|
||||
@Usage : 联合监测模型
|
||||
@Desc : RNet:去除掉DCAU
|
||||
@Desc : RNet:LCAU
|
||||
'''
|
||||
|
||||
import tensorflow as tf
|
||||
|
|
|
|||
|
|
@ -0,0 +1,447 @@
|
|||
# _*_ coding: UTF-8 _*_
|
||||
|
||||
|
||||
'''
|
||||
@Author : dingjiawen
|
||||
@Date : 2022/7/14 9:40
|
||||
@Usage : 联合监测模型
|
||||
@Desc : RNet:去除掉DCAU
|
||||
'''
|
||||
|
||||
import tensorflow as tf
|
||||
import tensorflow.keras as keras
|
||||
from tensorflow.keras import *
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from model.DepthwiseCon1D.DepthwiseConv1D import DepthwiseConv1D
|
||||
from model.Dynamic_channelAttention.Dynamic_channelAttention import DynamicChannelAttention, DynamicPooling
|
||||
from condition_monitoring.data_deal import loadData
|
||||
from model.LossFunction.smooth_L1_Loss import SmoothL1Loss
|
||||
|
||||
|
||||
class Joint_Monitoring(keras.Model):
|
||||
|
||||
def __init__(self, conv_filter=20):
|
||||
# 调用父类__init__()方法
|
||||
super(Joint_Monitoring, self).__init__()
|
||||
# step one
|
||||
self.RepDCBlock1 = RevConvBlock(num=3, kernel_size=5)
|
||||
self.conv1 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=1, strides=2, padding='SAME')
|
||||
self.upsample1 = tf.keras.layers.UpSampling1D(size=2)
|
||||
|
||||
# self.DACU2 = DynamicChannelAttention()
|
||||
self.RepDCBlock2 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.conv2 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=1, strides=2, padding='SAME')
|
||||
self.upsample2 = tf.keras.layers.UpSampling1D(size=2)
|
||||
|
||||
# self.DACU3 = DynamicChannelAttention()
|
||||
self.RepDCBlock3 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.p1 = DynamicPooling(pool_size=2)
|
||||
self.conv3 = tf.keras.layers.Conv1D(filters=2 * conv_filter, kernel_size=3, strides=2, padding='SAME')
|
||||
|
||||
# self.DACU4 = DynamicChannelAttention()
|
||||
self.RepDCBlock4 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.p2 = DynamicPooling(pool_size=4)
|
||||
self.conv4 = tf.keras.layers.Conv1D(filters=conv_filter, kernel_size=3, strides=2, padding='SAME')
|
||||
|
||||
self.RepDCBlock5 = RevConvBlock(num=3, kernel_size=3)
|
||||
self.p3 = DynamicPooling(pool_size=2)
|
||||
|
||||
# step two
|
||||
# 重现原数据
|
||||
self.GRU1 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||
self.d1 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.output1 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
|
||||
self.GRU2 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||
self.d2 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.output2 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
|
||||
self.GRU3 = tf.keras.layers.GRU(128, return_sequences=False)
|
||||
self.d3 = tf.keras.layers.Dense(300, activation=tf.nn.leaky_relu)
|
||||
self.output3 = tf.keras.layers.Dense(10, activation=tf.nn.leaky_relu)
|
||||
|
||||
|
||||
# loss
|
||||
self.train_loss = []
|
||||
|
||||
def call(self, inputs, training=None, mask=None, is_first_time: bool = True):
|
||||
# step one
|
||||
RepDCBlock1 = self.RepDCBlock1(inputs)
|
||||
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
|
||||
conv1 = self.conv1(RepDCBlock1)
|
||||
conv1 = tf.nn.leaky_relu(conv1)
|
||||
conv1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
upsample1 = self.upsample1(conv1)
|
||||
|
||||
# DACU2 = self.DACU2(upsample1)
|
||||
DACU2 = tf.keras.layers.BatchNormalization()(upsample1)
|
||||
RepDCBlock2 = self.RepDCBlock2(DACU2)
|
||||
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
|
||||
conv2 = self.conv2(RepDCBlock2)
|
||||
conv2 = tf.nn.leaky_relu(conv2)
|
||||
conv2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
upsample2 = self.upsample2(conv2)
|
||||
|
||||
# DACU3 = self.DACU3(upsample2)
|
||||
DACU3 = tf.keras.layers.BatchNormalization()(upsample2)
|
||||
RepDCBlock3 = self.RepDCBlock3(DACU3)
|
||||
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
|
||||
conv3 = self.conv3(RepDCBlock3)
|
||||
conv3 = tf.nn.leaky_relu(conv3)
|
||||
conv3 = tf.keras.layers.BatchNormalization()(conv3)
|
||||
|
||||
concat1 = tf.concat([conv2, conv3], axis=1)
|
||||
|
||||
# DACU4 = self.DACU4(concat1)
|
||||
DACU4 = tf.keras.layers.BatchNormalization()(concat1)
|
||||
RepDCBlock4 = self.RepDCBlock4(DACU4)
|
||||
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
|
||||
conv4 = self.conv4(RepDCBlock4)
|
||||
conv4 = tf.nn.leaky_relu(conv4)
|
||||
conv4 = tf.keras.layers.BatchNormalization()(conv4)
|
||||
|
||||
concat2 = tf.concat([conv1, conv4], axis=1)
|
||||
|
||||
RepDCBlock5 = self.RepDCBlock5(concat2)
|
||||
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
|
||||
|
||||
output1 = []
|
||||
output2 = []
|
||||
output3 = []
|
||||
output4 = []
|
||||
|
||||
if is_first_time:
|
||||
# step two
|
||||
# 重现原数据
|
||||
# 接block3
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
else:
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
|
||||
# 多尺度动态池化
|
||||
# p1 = self.p1(output1)
|
||||
# B, _, _ = p1.shape
|
||||
# f1 = tf.reshape(p1, shape=[B, -1])
|
||||
# p2 = self.p2(output2)
|
||||
# f2 = tf.reshape(p2, shape=[B, -1])
|
||||
# p3 = self.p3(output3)
|
||||
# f3 = tf.reshape(p3, shape=[B, -1])
|
||||
# step three
|
||||
# 分类器
|
||||
concat3 = tf.concat([output1, output2, output3], axis=1)
|
||||
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
|
||||
d4 = self.d4(concat3)
|
||||
d5 = self.d5(d4)
|
||||
# d4 = tf.keras.layers.BatchNormalization()(d4)
|
||||
output4 = self.output4(d5)
|
||||
|
||||
return output1, output2, output3, output4
|
||||
|
||||
def get_loss(self, inputs_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
|
||||
pred_5=None):
|
||||
# step one
|
||||
RepDCBlock1 = self.RepDCBlock1(inputs_tensor)
|
||||
RepDCBlock1 = tf.keras.layers.BatchNormalization()(RepDCBlock1)
|
||||
conv1 = self.conv1(RepDCBlock1)
|
||||
conv1 = tf.nn.leaky_relu(conv1)
|
||||
conv1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
upsample1 = self.upsample1(conv1)
|
||||
|
||||
# DACU2 = self.DACU2(upsample1)
|
||||
DACU2 = tf.keras.layers.BatchNormalization()(upsample1)
|
||||
RepDCBlock2 = self.RepDCBlock2(DACU2)
|
||||
RepDCBlock2 = tf.keras.layers.BatchNormalization()(RepDCBlock2)
|
||||
conv2 = self.conv2(RepDCBlock2)
|
||||
conv2 = tf.nn.leaky_relu(conv2)
|
||||
conv2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
upsample2 = self.upsample2(conv2)
|
||||
|
||||
# DACU3 = self.DACU3(upsample2)
|
||||
DACU3 = tf.keras.layers.BatchNormalization()(upsample2)
|
||||
RepDCBlock3 = self.RepDCBlock3(DACU3)
|
||||
RepDCBlock3 = tf.keras.layers.BatchNormalization()(RepDCBlock3)
|
||||
conv3 = self.conv3(RepDCBlock3)
|
||||
conv3 = tf.nn.leaky_relu(conv3)
|
||||
conv3 = tf.keras.layers.BatchNormalization()(conv3)
|
||||
|
||||
concat1 = tf.concat([conv2, conv3], axis=1)
|
||||
|
||||
# DACU4 = self.DACU4(concat1)
|
||||
DACU4 = tf.keras.layers.BatchNormalization()(concat1)
|
||||
RepDCBlock4 = self.RepDCBlock4(DACU4)
|
||||
RepDCBlock4 = tf.keras.layers.BatchNormalization()(RepDCBlock4)
|
||||
conv4 = self.conv4(RepDCBlock4)
|
||||
conv4 = tf.nn.leaky_relu(conv4)
|
||||
conv4 = tf.keras.layers.BatchNormalization()(conv4)
|
||||
|
||||
concat2 = tf.concat([conv1, conv4], axis=1)
|
||||
|
||||
RepDCBlock5 = self.RepDCBlock5(concat2)
|
||||
RepDCBlock5 = tf.keras.layers.BatchNormalization()(RepDCBlock5)
|
||||
|
||||
if is_first_time:
|
||||
# step two
|
||||
# 重现原数据
|
||||
# 接block3
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
|
||||
# reduce_mean降维计算均值
|
||||
MSE_loss1 = SmoothL1Loss()(y_true=label1, y_pred=output1)
|
||||
MSE_loss2 = SmoothL1Loss()(y_true=label1, y_pred=output2)
|
||||
MSE_loss3 = SmoothL1Loss()(y_true=label1, y_pred=output3)
|
||||
# MSE_loss1 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output1))
|
||||
# MSE_loss2 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output2))
|
||||
# MSE_loss3 = tf.reduce_mean(tf.keras.losses.mse(y_true=label1, y_pred=output3))
|
||||
|
||||
print("MSE_loss1:", MSE_loss1.numpy())
|
||||
print("MSE_loss2:", MSE_loss2.numpy())
|
||||
print("MSE_loss3:", MSE_loss3.numpy())
|
||||
loss = MSE_loss1 + MSE_loss2 + MSE_loss3
|
||||
Accuracy_num = 0
|
||||
|
||||
else:
|
||||
# step two
|
||||
# 重现原数据
|
||||
# 接block3
|
||||
GRU1 = self.GRU1(RepDCBlock3)
|
||||
GRU1 = tf.keras.layers.BatchNormalization()(GRU1)
|
||||
d1 = self.d1(GRU1)
|
||||
# tf.nn.softmax
|
||||
output1 = self.output1(d1)
|
||||
# 接block4
|
||||
GRU2 = self.GRU2(RepDCBlock4)
|
||||
GRU2 = tf.keras.layers.BatchNormalization()(GRU2)
|
||||
d2 = self.d2(GRU2)
|
||||
# tf.nn.softmax
|
||||
output2 = self.output2(d2)
|
||||
# 接block5
|
||||
GRU3 = self.GRU3(RepDCBlock5)
|
||||
GRU3 = tf.keras.layers.BatchNormalization()(GRU3)
|
||||
d3 = self.d3(GRU3)
|
||||
# tf.nn.softmax
|
||||
output3 = self.output3(d3)
|
||||
|
||||
# 多尺度动态池化
|
||||
# p1 = self.p1(output1)
|
||||
# B, _, _ = p1.shape
|
||||
# f1 = tf.reshape(p1, shape=[B, -1])
|
||||
# p2 = self.p2(output2)
|
||||
# f2 = tf.reshape(p2, shape=[B, -1])
|
||||
# p3 = self.p3(output3)
|
||||
# f3 = tf.reshape(p3, shape=[B, -1])
|
||||
# step three
|
||||
# 分类器
|
||||
concat3 = tf.concat([output1, output2, output3], axis=1)
|
||||
# dropout = tf.keras.layers.Dropout(0.25)(concat3)
|
||||
d4 = self.d4(concat3)
|
||||
d5 = self.d5(d4)
|
||||
# d4 = tf.keras.layers.BatchNormalization()(d4)
|
||||
output4 = self.output4(d5)
|
||||
|
||||
# reduce_mean降维计算均值
|
||||
MSE_loss = SmoothL1Loss()(y_true=pred_3, y_pred=output1)
|
||||
MSE_loss += SmoothL1Loss()(y_true=pred_4, y_pred=output2)
|
||||
MSE_loss += SmoothL1Loss()(y_true=pred_5, y_pred=output3)
|
||||
Cross_Entropy_loss = tf.reduce_mean(
|
||||
tf.losses.binary_crossentropy(y_true=label2, y_pred=output4, from_logits=True))
|
||||
|
||||
print("MSE_loss:", MSE_loss.numpy())
|
||||
print("Cross_Entropy_loss:", Cross_Entropy_loss.numpy())
|
||||
Accuracy_num = self.get_Accuracy(label=label2, output=output4)
|
||||
loss = MSE_loss + Cross_Entropy_loss
|
||||
return loss, Accuracy_num
|
||||
|
||||
def get_Accuracy(self, output, label):
|
||||
|
||||
predict_label = tf.round(output)
|
||||
label = tf.cast(label, dtype=tf.float32)
|
||||
|
||||
t = np.array(label - predict_label)
|
||||
|
||||
b = t[t[:] == 0]
|
||||
|
||||
return b.__len__()
|
||||
|
||||
def get_grad(self, input_tensor, label1=None, label2=None, is_first_time: bool = True, pred_3=None, pred_4=None,
|
||||
pred_5=None):
|
||||
with tf.GradientTape() as tape:
|
||||
# todo 原本tape只会监控由tf.Variable创建的trainable=True属性
|
||||
# tape.watch(self.variables)
|
||||
L, Accuracy_num = self.get_loss(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
|
||||
pred_3=pred_3,
|
||||
pred_4=pred_4, pred_5=pred_5)
|
||||
# 保存一下loss,用于输出
|
||||
self.train_loss = L
|
||||
g = tape.gradient(L, self.variables)
|
||||
return g, Accuracy_num
|
||||
|
||||
def train(self, input_tensor, label1=None, label2=None, learning_rate=1e-3, is_first_time: bool = True, pred_3=None,
|
||||
pred_4=None, pred_5=None):
|
||||
g, Accuracy_num = self.get_grad(input_tensor, label1=label1, label2=label2, is_first_time=is_first_time,
|
||||
pred_3=pred_3,
|
||||
pred_4=pred_4, pred_5=pred_5)
|
||||
optimizers.Adam(learning_rate).apply_gradients(zip(g, self.variables))
|
||||
return self.train_loss, Accuracy_num
|
||||
|
||||
# 暂时只支持batch_size等于1,不然要传z比较麻烦
|
||||
def get_val_loss(self, val_data, val_label1, val_label2, batch_size=16, is_first_time: bool = True,
|
||||
step_one_model=None):
|
||||
val_loss = []
|
||||
accuracy_num = 0
|
||||
output1 = 0
|
||||
output2 = 0
|
||||
output3 = 0
|
||||
z = 1
|
||||
size, length, dims = val_data.shape
|
||||
if batch_size == None:
|
||||
batch_size = self.batch_size
|
||||
for epoch in range(0, size - batch_size, batch_size):
|
||||
each_val_data = val_data[epoch:epoch + batch_size, :, :]
|
||||
each_val_label1 = val_label1[epoch:epoch + batch_size, :]
|
||||
each_val_label2 = val_label2[epoch:epoch + batch_size, ]
|
||||
# each_val_data = tf.expand_dims(each_val_data, axis=0)
|
||||
# each_val_query = tf.expand_dims(each_val_query, axis=0)
|
||||
# each_val_label = tf.expand_dims(each_val_label, axis=0)
|
||||
if not is_first_time:
|
||||
output1, output2, output3, _ = step_one_model.call(inputs=each_val_data, is_first_time=True)
|
||||
|
||||
each_loss, each_accuracy_num = self.get_loss(each_val_data, each_val_label1, each_val_label2,
|
||||
is_first_time=is_first_time,
|
||||
pred_3=output1, pred_4=output2, pred_5=output3)
|
||||
accuracy_num += each_accuracy_num
|
||||
val_loss.append(each_loss)
|
||||
z += 1
|
||||
|
||||
val_accuracy = accuracy_num / ((z-1) * batch_size)
|
||||
val_total_loss = tf.reduce_mean(val_loss)
|
||||
return val_total_loss, val_accuracy
|
||||
|
||||
|
||||
class RevConv(keras.layers.Layer):
|
||||
|
||||
def __init__(self, kernel_size=3):
|
||||
# 调用父类__init__()方法
|
||||
super(RevConv, self).__init__()
|
||||
self.kernel_size = kernel_size
|
||||
|
||||
def get_config(self):
|
||||
# 自定义层里面的属性
|
||||
config = (
|
||||
{
|
||||
'kernel_size': self.kernel_size
|
||||
}
|
||||
)
|
||||
base_config = super(RevConv, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
def build(self, input_shape):
|
||||
# print(input_shape)
|
||||
_, _, output_dim = input_shape[0], input_shape[1], input_shape[2]
|
||||
self.conv1 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=self.kernel_size, strides=1,
|
||||
padding='causal',
|
||||
dilation_rate=4)
|
||||
|
||||
self.conv2 = tf.keras.layers.Conv1D(filters=output_dim, kernel_size=1, strides=1, padding='causal',
|
||||
dilation_rate=4)
|
||||
# self.b2 = tf.keras.layers.BatchNormalization()
|
||||
|
||||
# self.b3 = tf.keras.layers.BatchNormalization()
|
||||
|
||||
# out = tf.keras.layers.Add()([b1, b2, b3])
|
||||
# out = tf.nn.relu(out)
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
conv1 = self.conv1(inputs)
|
||||
b1 = tf.keras.layers.BatchNormalization()(conv1)
|
||||
b1 = tf.nn.leaky_relu(b1)
|
||||
# b1 = self.b1
|
||||
|
||||
conv2 = self.conv2(inputs)
|
||||
b2 = tf.keras.layers.BatchNormalization()(conv2)
|
||||
b2 = tf.nn.leaky_relu(b2)
|
||||
|
||||
b3 = tf.keras.layers.BatchNormalization()(inputs)
|
||||
|
||||
out = tf.keras.layers.Add()([b1, b2, b3])
|
||||
out = tf.nn.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class RevConvBlock(keras.layers.Layer):
|
||||
|
||||
def __init__(self, num: int = 3, kernel_size=3):
|
||||
# 调用父类__init__()方法
|
||||
super(RevConvBlock, self).__init__()
|
||||
self.num = num
|
||||
self.kernel_size = kernel_size
|
||||
self.L = []
|
||||
for i in range(num):
|
||||
RepVGG = RevConv(kernel_size=kernel_size)
|
||||
self.L.append(RepVGG)
|
||||
|
||||
def get_config(self):
|
||||
# 自定义层里面的属性
|
||||
config = (
|
||||
{
|
||||
'kernel_size': self.kernel_size,
|
||||
'num': self.num
|
||||
}
|
||||
)
|
||||
base_config = super(RevConvBlock, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
for i in range(self.num):
|
||||
inputs = self.L[i](inputs)
|
||||
return inputs
|
||||
Loading…
Reference in New Issue