#-*- encoding:utf-8 -*- ''' @Author : dingjiawen @Date : 2023/12/12 13:41 @Usage : @Desc : ''' # -*- coding: UTF-8 -*- import numpy as np import torch from torch.autograd import Variable import setting import dataset from model import CNN import encoding def main(model_path): cnn = CNN() cnn.eval() cnn.load_state_dict(torch.load(model_path)) print("load cnn net.") eval_dataloader = dataset.get_eval_data_loader() correct = 0 total = 0 for i, (images, labels) in enumerate(eval_dataloader): image = images vimage = Variable(image) predict_label = cnn(vimage) c0 = setting.ALL_CHAR_SET[np.argmax( predict_label[0, 0:setting.ALL_CHAR_SET_LEN].data.numpy())] c1 = setting.ALL_CHAR_SET[np.argmax( predict_label[0, setting.ALL_CHAR_SET_LEN:2 * setting.ALL_CHAR_SET_LEN].data.numpy())] c2 = setting.ALL_CHAR_SET[np.argmax( predict_label[0, 2 * setting.ALL_CHAR_SET_LEN:3 * setting.ALL_CHAR_SET_LEN].data.numpy())] c3 = setting.ALL_CHAR_SET[np.argmax( predict_label[0, 3 * setting.ALL_CHAR_SET_LEN:4 * setting.ALL_CHAR_SET_LEN].data.numpy())] predict_label = '%s%s%s%s' % (c0, c1, c2, c3) true_label = encoding.decode(labels.numpy()[0]) total += labels.size(0) if (predict_label == true_label): correct += 1 if (total % 200 == 0): print('Test Accuracy of the model on the %d eval images: %f %%' % (total, 100 * correct / total)) print('Test Accuracy of the model on the %d eval images: %f %%' % (total, 100 * correct / total)) return correct / total if __name__ == '__main__': main()