import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt fashion_mnist = keras.datasets.fashion_mnist (train_image, train_label), (test_image, test_label) = fashion_mnist.load_data() train_image = train_image / 255.0 test_image = test_image / 255.0 '''input=keras.Input(shape=(28,28)) x=keras.layers.Flatten()(input) x=keras.layers.Dense(32,activation='relu')(x) x=keras.layers.Dropout(0.5)(x) x=keras.layers.Dense(64,activation='relu')(x) output=keras.layers.Dense(10,activation='softmax')(x) model=keras.Model(inputs=input,outputs=output) model.summary() model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['acc'],) history=model.fit(train_image,train_label,epochs=10,validation_data=(test_image,test_label),batch_size=5) plt.plot(history.epoch,history.history.get('acc'),label='acc') plt.plot(history.epoch,history.history.get('val_acc'),label='val_acc') plt.legend() plt.show() model.evaluate(test_image,test_label,batch_size=5)''' input1 = keras.Input(shape=(28, 28)) input2 = keras.Input(shape=(28, 28)) x1 = keras.layers.Flatten()(input1) x2 = keras.layers.Flatten()(input2) x = keras.layers.concatenate([x1, x2]) x = keras.layers.Dense(32, activation='relu')(x) output = keras.layers.Dense(1, activation='sigmoid')(x) model = keras.Model(inputs=[input1, input2], outputs=output) model.summary()