import tensorflow as tf import numpy as np from sklearn.datasets import load_iris data = load_iris() iris_data = np.float32(data.data) iris_target = np.float32(data.target) iris_target = np.float32(tf.keras.utils.to_categorical(iris_target, num_classes=3)) train_data = tf.data.Dataset.from_tensor_slices((iris_data, iris_target)).batch(128) class MyLayer(tf.keras.layers.Layer): def __init__(self, output_dim): self.output_dim = output_dim super(MyLayer, self).__init__() def build(self, input_shape): self.weight = tf.Variable(tf.random.normal([input_shape[-1], self.output_dim]), name="dense_weight") self.bias = tf.Variable(tf.random.normal([self.output_dim]), name="bias_weight") super(MyLayer, self).build(input_shape) # Be sure to call this somewhere! def call(self, input_tensor): out = tf.matmul(input_tensor, self.weight) + self.bias out = tf.nn.relu(out) out = tf.keras.layers.Dropout(0.1)(out) return out input_xs = tf.keras.Input(shape=(4), name='input_xs') out = tf.keras.layers.Dense(32, activation='relu', name='dense_1')(input_xs) out = MyLayer(32)(out) out = MyLayer(48)(out) out = tf.keras.layers.Dense(64, activation='relu', name='dense_2')(out) logits = tf.keras.layers.Dense(3, activation="softmax", name='predictions')(out) model = tf.keras.Model(inputs=input_xs, outputs=logits) print(model.summary())