import tensorflow as tf import numpy as np from sklearn.datasets import load_iris data = load_iris() iris_target = data.target iris_data = np.float32(data.data) iris_target = np.float32(tf.keras.utils.to_categorical(iris_target,num_classes=3)) iris_data = tf.data.Dataset.from_tensor_slices(iris_data).batch(50) iris_target = tf.data.Dataset.from_tensor_slices(iris_target).batch(50) model = tf.keras.models.Sequential() # Add layers model.add(tf.keras.layers.Dense(32, activation="relu")) model.add(tf.keras.layers.Dense(64, activation="relu")) model.add(tf.keras.layers.Dense(3,activation="softmax")) opt = tf.optimizers.Adam(1e-3) for epoch in range(1000): for _data,lable in zip(iris_data,iris_target): with tf.GradientTape() as tape: '''固定的写法,tf.reduce_mean计算损失函数,tape.gradient计算gradient''' logits = model(_data) loss_value = tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true = lable,y_pred = logits)) grads = tape.gradient(loss_value, model.trainable_variables) opt.apply_gradients(zip(grads, model.trainable_variables)) print('Training loss is :', loss_value.numpy())