from matplotlib import numpy import matplotlib.pyplot as plot import numpy as np import tensorflow as tf import os import loadData import labeled_and_piece data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱齿轮表面磨损故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱齿轮表面磨损故障恒速\DATA')) dataWithLabel1 = labeled_and_piece.ConcatLabel(data, 1, True) dataWithLabel1 = np.array(dataWithLabel1(data, 1, True)) # 导入第二类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱齿轮齿根裂纹故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱齿轮齿根裂纹故障恒速\DATA')) dataWithLabel2 = labeled_and_piece.ConcatLabel(data, 2, True) dataWithLabel2 = np.array(dataWithLabel2(data, 2, True)) # 导入第三类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱齿轮断齿故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱齿轮断齿故障恒速\DATA')) dataWithLabel3 = labeled_and_piece.ConcatLabel(data, 3, True) dataWithLabel3 = np.array(dataWithLabel3(data, 3, True)) # 导入第四类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱齿轮偏心故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱齿轮偏心故障恒速\DATA')) dataWithLabel4 = labeled_and_piece.ConcatLabel(data, 4, True) dataWithLabel4 = np.array(dataWithLabel4(data, 4, True)) # 导入第五类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱齿轮缺齿故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱齿轮缺齿故障恒速\DATA')) dataWithLabel5 = labeled_and_piece.ConcatLabel(data, 5, True) dataWithLabel5 = labeled_and_piece.np.array(dataWithLabel5(data, 5, True)) # 导入第六类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱轴承复合故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱轴承复合故障恒速\DATA')) dataWithLabel6 = labeled_and_piece.ConcatLabel(data, 6, True) dataWithLabel6 = np.array(dataWithLabel6(data, 6, True)) # 导入第七类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱轴承滚动体故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱轴承滚动体故障恒速\DATA')) dataWithLabel7 = labeled_and_piece.ConcatLabel(data, 7, True) dataWithLabel7 = np.array(dataWithLabel7(data, 7, True)) # 导入第八类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱轴承内圈故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱轴承内圈故障恒速\DATA')) dataWithLabel8 = labeled_and_piece.ConcatLabel(data, 8, True) dataWithLabel8 = np.array(dataWithLabel8(data, 8, True)) # 导入第九类故障并打标签 data0 = loadData.DataDeal1(9, 'E:\data\DDS_data\平行齿轮箱轴承外圈故障恒速\DATA') data = np.array(data0(9, 'E:\data\DDS_data\平行齿轮箱轴承外圈故障恒速\DATA')) dataWithLabel9 = labeled_and_piece.ConcatLabel(data, 9, True) dataWithLabel9 = np.array(dataWithLabel9(data, 9, True)) data_all = tf.concat( [dataWithLabel1, dataWithLabel2, dataWithLabel3, dataWithLabel4, dataWithLabel5, dataWithLabel6, dataWithLabel7, dataWithLabel8, dataWithLabel9], axis=1) data_all = np.array(data_all) print(data_all.shape) data_all =tf.transpose(data,[1,2,0]) print(data_all.shape) data_train = tf.random.shuffle(data_all) print(data_train) data_all = tf.transpose(data, [2, 0, 1]) data_new = labeled_and_piece.PieceAndBag(data_train, True) (train_data, train_label), (test_data, test_label) = data_new(data_train, True) train_data = np.array(train_data) train_label = np.array(train_label) test_data = np.array(test_data) test_label = np.array(test_label) print(train_data.shape) print(train_label.shape) print(test_data.shape) print(test_label.shape)