# -*- encoding:utf-8 -*- ''' @Author : dingjiawen @Date : 2023/11/10 16:27 @Usage : @Desc : ''' import numpy as np import torch from .dataset_wind.loadData import getDataset, getTotalData from torch.utils.data import DataLoader from RUL.baseModel.plot import plot_prediction, plot_forSelf from RUL.baseModel.loss.Evaluate import getEvaluate # 仅使用预测出来的最新的一个点预测以后 def predictOneByOne(model, train_data, predict_num=50): # 取出训练数据的最后一条 each_predict_data = train_data[-1].unsqueeze(0) predicted_list = np.empty(shape=(predict_num, 1)) # (5,filter_num,30) # all_data = total_data # (1201,) for each_predict in range(predict_num): # predicted_data.shape : (1,1) predicted_data = model.predict(each_predict_data).cpu().detach().numpy() # (batch_size,filer_num,1) predicted_list[each_predict] = predicted_data each_predict_data = each_predict_data.numpy() # (1,1) => (10,1) # 中间拼接过程: (1) => (10) => (40,10) => (30,40,10) c = each_predict_data[-1, -1, 1:] a = np.concatenate([each_predict_data[-1, -1, 1:], np.expand_dims(predicted_data, axis=0)], axis=0) # a = np.concatenate([each_predict_data[-1, -1, 1:], predicted_data], axis=0) b = np.concatenate([each_predict_data[-1, 1:, :], np.expand_dims(a, axis=0)], axis=0) c = np.expand_dims(b, axis=0) each_predict_data = torch.tensor(c) return np.squeeze(predicted_list) def test(hidden_num, feature, predict_num, batch_size, model, is_single=True, is_norm=False, save_fig_name=""): total_data, total_dataset = getTotalData(hidden_num, feature, is_single=is_single, is_norm=is_norm) train_dataset, val_dataset = getDataset(hidden_num, feature, predict_num=predict_num, is_single=is_single, is_norm=is_norm) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=False) val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False) # 加载网络 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # print(model) params_num = sum(param.numel() for param in model.parameters()) print('参数数量:{}'.format(params_num)) model.eval() predicted_data_easy = total_data[:hidden_num + feature, ] predicted_data_hard = total_data[:hidden_num + feature, ] # 衡量矩阵 train_list = [] easy_list = [] val_label = [] with torch.no_grad(): for batch_idx, (data, label) in enumerate(train_loader): data, label = data.to(device), label.to(device) last_train_data = data each_predicted_data = model.predict(data).cpu().detach().numpy() predicted_data_easy = np.concatenate( [predicted_data_easy, each_predicted_data], axis=0) predicted_data_hard = np.concatenate( [predicted_data_hard, each_predicted_data], axis=0) train_list.append(getEvaluate(label.cpu().detach().numpy(),each_predicted_data)) # 简单版的,每次预测重新用已知的 for batch_idx, (data, label) in enumerate(val_loader): data, label = data.to(device), label.to(device) each_predicted_data = model.predict(data).cpu().detach().numpy() predicted_data_easy = np.concatenate( [predicted_data_easy, each_predicted_data], axis=0) easy_list.append(getEvaluate(label.cpu().detach().numpy(), each_predicted_data)) val_label=np.concatenate( [val_label, label.cpu().detach().numpy()], axis=0) # 困难版的,每次预测基于上次的预测 predict_hard = predictOneByOne(model, last_train_data, predict_num=predict_num) predicted_data_hard = np.concatenate([predicted_data_hard, predict_hard], axis=0) ####衡量 train_evaluate = np.mean(train_list, axis=0) easy_evaluate = np.mean(easy_list, axis=0) hard_evaluate = getEvaluate(val_label, predict_hard) print('train: RMSE %.6f, MAE %.6f, MAPE %.6f, Score %.6f' % (train_evaluate[0], train_evaluate[1], train_evaluate[2], train_evaluate[3])) print('easy: RMSE %.6f, MAE %.6f, MAPE %.6f, Score %.6f' % (easy_evaluate[0], easy_evaluate[1], easy_evaluate[2], easy_evaluate[3])) print('hard: RMSE %.6f, MAE %.6f, MAPE %.6f, Score %.6f' % (hard_evaluate[0], hard_evaluate[1], hard_evaluate[2], hard_evaluate[3])) plot_prediction(total_data, predicted_data_easy, predicted_data_hard, save_fig_name, predict_num=predict_num) plot_forSelf(total_data, predicted_data_easy, predicted_data_hard) if __name__ == '__main__': test(40, 10, 50, 32, "E:\self_example\pytorch_example\RUL\otherIdea/adaRNN\outputs\AdaRNN_tdcLoss(cos)_transferLoss(cos)_dw0.5_lr0.0005\parameters\AdaRNN_hidden24_feature10_predict50_dimList64-64_epoch62_trainLoss0.5115623474121094_valLoss0.12946119904518127.pkl" )