self_example/Spider/Chapter08_验证码的识别/深度学习识别图形验证码/train.py

67 lines
1.7 KiB
Python

# -*- encoding:utf-8 -*-
'''
@Author : dingjiawen
@Date : 2023/12/12 13:40
@Usage :
@Desc :
'''
# -*- coding: UTF-8 -*-
import torch
import torch.nn as nn
from torch.autograd import Variable
import dataset
from model import CNN
from evaluate import main as evaluate
import os
import os.path
num_epochs = 30
batch_size = 100
learning_rate = 0.001
output = './output'
os.path.exists(output) or os.makedirs(output)
def main():
cnn = CNN()
cnn.train()
criterion = nn.MultiLabelSoftMarginLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
max_eval_acc = -1
train_dataloader = dataset.get_train_data_loader()
for epoch in range(num_epochs):
model_path = os.path.join(output, "model.pkl")
for i, (images, labels) in enumerate(train_dataloader):
# 在这里变成可以torch梯度autograd的变量
images = Variable(images)
labels = Variable(labels.float())
predict_labels = cnn(images)
loss = criterion(predict_labels, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 10 == 0:
print("epoch:", epoch, "step:", i, "loss:", loss.item())
print("epoch:", epoch, "step:", i, "loss:", loss.item())
torch.save(cnn.state_dict(), model_path)
print("save model")
eval_acc = evaluate(model_path)
if eval_acc > max_eval_acc:
# best model save as best_model.pkl
torch.save(cnn.state_dict(), os.path.join(output, "best_model.pkl"))
print("save best model")
torch.save(cnn.state_dict(), os.path.join(output, "model.pkl"))
print("save last model")
if __name__ == '__main__':
main()