self_example/TensorFlow_eaxmple/TensorFlow_constant_Variable/多输入单输出.py

27 lines
1.3 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import tensorflow as tf
import numpy as np
from sklearn.datasets import load_iris
data = load_iris()
iris_data = np.float32(data.data)
iris_data_1 = []
iris_data_2 = []
for iris in iris_data:
iris_data_1.append(iris[0])
iris_data_2.append(iris[1:4])
iris_target = np.float32(tf.keras.utils.to_categorical(data.target,num_classes=3))
#注意数据的包裹层数。
train_data = tf.data.Dataset.from_tensor_slices(((iris_data_1,iris_data_2),iris_target)).batch(128)
input_xs_1 = tf.keras.Input(shape=(1,), name='input_xs_1') #接收输入参数一
input_xs_2 = tf.keras.Input(shape=(3,), name='input_xs_2') #接收输入参数二
input_xs = tf.concat([input_xs_1,input_xs_2],axis=-1) #重新组合参数
out = tf.keras.layers.Dense(32, activation='relu', name='dense_1')(input_xs)
out = tf.keras.layers.Dense(64, activation='relu', name='dense_2')(out)
logits = tf.keras.layers.Dense(3, activation="softmax",name='predictions')(out)
model = tf.keras.Model(inputs=[input_xs_1,input_xs_2], outputs=logits) #请注意model中的中括号
opt = tf.optimizers.Adam(1e-3)
model.compile(optimizer=tf.optimizers.Adam(1e-3), loss=tf.losses.categorical_crossentropy,metrics = ['accuracy'])
model.fit(x = train_data, epochs=500)
score = model.evaluate(train_data)
print("多头score",score)