self_example/TensorFlow_eaxmple/TensorFlow_constant_Variable/自定义层打印结构.py

37 lines
1.4 KiB
Python

import tensorflow as tf
import numpy as np
from sklearn.datasets import load_iris
data = load_iris()
iris_data = np.float32(data.data)
iris_target = np.float32(data.target)
iris_target = np.float32(tf.keras.utils.to_categorical(iris_target, num_classes=3))
train_data = tf.data.Dataset.from_tensor_slices((iris_data, iris_target)).batch(128)
class MyLayer(tf.keras.layers.Layer):
def __init__(self, output_dim):
self.output_dim = output_dim
super(MyLayer, self).__init__()
def build(self, input_shape):
self.weight = tf.Variable(tf.random.normal([input_shape[-1], self.output_dim]), name="dense_weight")
self.bias = tf.Variable(tf.random.normal([self.output_dim]), name="bias_weight")
super(MyLayer, self).build(input_shape) # Be sure to call this somewhere!
def call(self, input_tensor):
out = tf.matmul(input_tensor, self.weight) + self.bias
out = tf.nn.relu(out)
out = tf.keras.layers.Dropout(0.1)(out)
return out
input_xs = tf.keras.Input(shape=(4), name='input_xs')
out = tf.keras.layers.Dense(32, activation='relu', name='dense_1')(input_xs)
out = MyLayer(32)(out)
out = MyLayer(48)(out)
out = tf.keras.layers.Dense(64, activation='relu', name='dense_2')(out)
logits = tf.keras.layers.Dense(3, activation="softmax", name='predictions')(out)
model = tf.keras.Model(inputs=input_xs, outputs=logits)
print(model.summary())