209 lines
8.1 KiB
Python
209 lines
8.1 KiB
Python
# -*- encoding:utf-8 -*-
|
|
|
|
'''
|
|
@Author : dingjiawen
|
|
@Date : 2023/11/15 14:44
|
|
@Usage :
|
|
@Desc :
|
|
'''
|
|
import torch
|
|
import torch.nn as nn
|
|
from RUL.otherIdea.adaRNN.loss_transfer import TransferLoss
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class AdaRNN(nn.Module):
|
|
"""
|
|
model_type: 'Boosting', 'AdaRNN'
|
|
bottleneck_list: (dim,is_BatchNorm,is_ReLu,drop_out)
|
|
"""
|
|
|
|
def __init__(self, use_bottleneck=False, bottleneck_list=[(64,False,False,0),(64,True,True,0.5)], n_input=128, n_hiddens=[64, 64], n_output=6,
|
|
dropout=0.0, len_seq=9, model_type='AdaRNN',
|
|
trans_loss='mmd'):
|
|
super(AdaRNN, self).__init__()
|
|
self.use_bottleneck = use_bottleneck
|
|
self.n_input = n_input
|
|
self.num_layers = len(n_hiddens)
|
|
self.hiddens = n_hiddens
|
|
self.n_output = n_output
|
|
self.model_type = model_type
|
|
self.trans_loss = trans_loss
|
|
self.len_seq = len_seq
|
|
in_size = self.n_input
|
|
|
|
features = nn.ModuleList()
|
|
for hidden in n_hiddens:
|
|
rnn = nn.GRU(
|
|
input_size=in_size,
|
|
num_layers=1,
|
|
hidden_size=hidden,
|
|
batch_first=True,
|
|
dropout=dropout
|
|
)
|
|
features.append(rnn)
|
|
in_size = hidden
|
|
self.features = nn.Sequential(*features)
|
|
|
|
if use_bottleneck == True: # finance
|
|
bottleneck =[]
|
|
for i in range(len(bottleneck_list)):
|
|
cur_input_dim = self.hiddens[-1] if i == 0 else bottleneck_list[i - 1][0]
|
|
bottleneck.append(
|
|
nn.Linear(cur_input_dim, bottleneck_list[i][0])
|
|
)
|
|
bottleneck[-1].weight.data.normal_(0, 0.05)
|
|
bottleneck[-1].bias.data.fill_(0.1)
|
|
if bottleneck_list[i][1]:
|
|
bottleneck.append(nn.BatchNorm1d(bottleneck_list[i][0]))
|
|
if bottleneck_list[i][2]:
|
|
bottleneck.append(nn.ReLU())
|
|
if bottleneck_list[i][3] != 0:
|
|
bottleneck.append(nn.Dropout(bottleneck_list[i][3]))
|
|
self.bottleneck = nn.Sequential(*bottleneck)
|
|
self.fc = nn.Linear(bottleneck_list[-1][0], n_output)
|
|
|
|
torch.nn.init.xavier_normal_(self.fc.weight)
|
|
else:
|
|
self.fc_out = nn.Linear(n_hiddens[-1], self.n_output)
|
|
|
|
if self.model_type == 'AdaRNN':
|
|
gate = nn.ModuleList()
|
|
for i in range(len(n_hiddens)):
|
|
gate_weight = nn.Linear(
|
|
len_seq * self.hiddens[i] * 2, len_seq)
|
|
gate.append(gate_weight)
|
|
self.gate = gate
|
|
|
|
bnlst = nn.ModuleList()
|
|
for i in range(len(n_hiddens)):
|
|
bnlst.append(nn.BatchNorm1d(len_seq))
|
|
self.bn_lst = bnlst
|
|
self.softmax = torch.nn.Softmax(dim=0)
|
|
self.init_layers()
|
|
|
|
def init_layers(self):
|
|
for i in range(len(self.hiddens)):
|
|
self.gate[i].weight.data.normal_(0, 0.05)
|
|
self.gate[i].bias.data.fill_(0.0)
|
|
|
|
def forward_pre_train(self, x, len_win=0):
|
|
out = self.gru_features(x)
|
|
# 两层GRU之后的结果
|
|
fea = out[0]
|
|
|
|
if self.use_bottleneck == True:
|
|
fea_bottleneck = self.bottleneck(fea[:, -1, :])
|
|
fc_out = self.fc(fea_bottleneck).squeeze()
|
|
else:
|
|
fc_out = self.fc_out(fea[:, -1, :]).squeeze()
|
|
# 每层GRU之后的结果,每层GRU前后权重归一化之后的结果
|
|
out_list_all, out_weight_list = out[1], out[2]
|
|
# 可以理解为前半段 和 后半段
|
|
out_list_s, out_list_t = self.get_features(out_list_all)
|
|
loss_transfer = torch.zeros((1,))
|
|
for i in range(len(out_list_s)):
|
|
criterion_transder = TransferLoss(
|
|
loss_type=self.trans_loss, input_dim=out_list_s[i].shape[2])
|
|
h_start = 0
|
|
for j in range(h_start, self.len_seq, 1):
|
|
i_start = max(j - len_win, 0)
|
|
i_end = j + len_win if j + len_win < self.len_seq else self.len_seq - 1
|
|
for k in range(i_start, i_end + 1):
|
|
weight = out_weight_list[i][j] if self.model_type == 'AdaRNN' else 1 / (
|
|
self.len_seq - h_start) * (2 * len_win + 1)
|
|
loss_transfer = loss_transfer + weight * criterion_transder.compute(
|
|
out_list_s[i][:, j, :], out_list_t[i][:, k, :])
|
|
return fc_out, loss_transfer, out_weight_list
|
|
|
|
def gru_features(self, x, predict=False):
|
|
x_input = x
|
|
out = None
|
|
out_lis = []
|
|
out_weight_list = [] if (
|
|
self.model_type == 'AdaRNN') else None
|
|
for i in range(self.num_layers):
|
|
# GRU的输出
|
|
out, _ = self.features[i](x_input.float())
|
|
x_input = out
|
|
out_lis.append(out)
|
|
if self.model_type == 'AdaRNN' and predict == False:
|
|
out_gate = self.process_gate_weight(x_input, i)
|
|
out_weight_list.append(out_gate)
|
|
# 两层GRU之后的结果,每层GRU之后的结果,每层GRU前后权重归一化之后的结果
|
|
return out, out_lis, out_weight_list
|
|
|
|
def process_gate_weight(self, out, index):
|
|
x_s = out[0: int(out.shape[0] // 2)] # 可以理解为前一半个batch_size的分布 域Di
|
|
x_t = out[out.shape[0] // 2: out.shape[0]] # 可以理解为后一半个batch_size的分布 域Dj
|
|
# 对应着不同的域
|
|
x_all = torch.cat((x_s, x_t), 2)
|
|
x_all = x_all.view(x_all.shape[0], -1)
|
|
weight = torch.sigmoid(self.bn_lst[index](
|
|
self.gate[index](x_all.float())))
|
|
weight = torch.mean(weight, dim=0)
|
|
res = self.softmax(weight).squeeze()
|
|
return res
|
|
|
|
def get_features(self, output_list):
|
|
fea_list_src, fea_list_tar = [], []
|
|
for fea in output_list:
|
|
fea_list_src.append(fea[0: fea.size(0) // 2])
|
|
fea_list_tar.append(fea[fea.size(0) // 2:])
|
|
return fea_list_src, fea_list_tar
|
|
|
|
# For Boosting-based
|
|
def forward_Boosting(self, x, weight_mat=None):
|
|
out = self.gru_features(x)
|
|
fea = out[0]
|
|
|
|
if self.use_bottleneck:
|
|
fea_bottleneck = self.bottleneck(fea[:, -1, :])
|
|
fc_out = self.fc(fea_bottleneck).squeeze()
|
|
else:
|
|
fc_out = self.fc_out(fea[:, -1, :]).squeeze()
|
|
|
|
out_list_all = out[1]
|
|
# 可以理解为前半段和后半段
|
|
out_list_s, out_list_t = self.get_features(out_list_all)
|
|
loss_transfer = torch.zeros((1,))
|
|
if weight_mat is None:
|
|
weight = (1.0 / self.len_seq *
|
|
torch.ones(self.num_layers, self.len_seq))
|
|
else:
|
|
weight = weight_mat
|
|
dist_mat = torch.zeros(self.num_layers, self.len_seq)
|
|
for i in range(len(out_list_s)):
|
|
criterion_transder = TransferLoss(
|
|
loss_type=self.trans_loss, input_dim=out_list_s[i].shape[2])
|
|
for j in range(self.len_seq):
|
|
loss_trans = criterion_transder.compute(
|
|
out_list_s[i][:, j, :], out_list_t[i][:, j, :])
|
|
loss_transfer = loss_transfer + weight[i, j] * loss_trans
|
|
dist_mat[i, j] = loss_trans
|
|
return fc_out, loss_transfer, dist_mat, weight
|
|
|
|
# For Boosting-based
|
|
def update_weight_Boosting(self, weight_mat, dist_old, dist_new):
|
|
epsilon = 1e-12
|
|
dist_old = dist_old.detach()
|
|
dist_new = dist_new.detach()
|
|
ind = dist_new > dist_old + epsilon
|
|
weight_mat[ind] = weight_mat[ind] * \
|
|
(1 + torch.sigmoid(dist_new[ind] - dist_old[ind]))
|
|
weight_norm = torch.norm(weight_mat, dim=1, p=1)
|
|
weight_mat = weight_mat / weight_norm.t().unsqueeze(1).repeat(1, self.len_seq)
|
|
return weight_mat
|
|
|
|
def predict(self, x):
|
|
out = self.gru_features(x, predict=True)
|
|
fea = out[0]
|
|
|
|
if self.use_bottleneck:
|
|
fea_bottleneck = self.bottleneck(fea[:, -1, :])
|
|
fc_out = self.fc(fea_bottleneck).squeeze()
|
|
else:
|
|
fc_out = self.fc_out(fea[:, -1, :]).squeeze()
|
|
|
|
return fc_out
|